
Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Date: 06 July 2015

Issue: 1

Page: 1 of 57

Author: Jukka Pietarinen

Event Generator

cPCI-EVG-220, cPCI-EVG-230, cPCI-EVG-300,

PXIe-EVG-300 and VME-EVG-230

Modular Register Map Firmware Version 0006

Contents
Safety Summary .. 4

Ground the Equipment. ... 4
Keep away From Live Circuits inside the Equipment. .. 4
Do Not Substitute Parts or Modify Equipment. .. 4

Flammability ... 4
EMI Caution .. 4
CE Notice .. 4
Hardware Installation .. 6

Installing the 3U Boards (cPCI-EVG-2x0 or PXIe-EVG-300) into a Chassis 6
Installing the 6U Boards (VME-EVG-230 or cPCI-EVG-300) into a Chassis 6
Replacing SFP (Small Form Factor Pluggable) Transceivers ... 6

Introduction ... 9
Event Stream Details ... 9

Event Codes ... 9
Distributed Bus and Data Transmission .. 10

Event Sources .. 10
Trigger Events ... 10
Upstream Events .. 11
Event Sequencer .. 12

Distributed Bus .. 13
Timestamping Inputs ... 14
Timestamp Generator .. 14

Multiplexed Counters .. 15
Configurable Size Data Buffer .. 15

Programmable Front Panel Connections ... 17
AC Line Synchronisation .. 17
Event Clock ... 17
RF Clock and Event Clock .. 18

Fractional Synthesiser ... 19
Connections ... 20

cPCI-EVG-2x0 Front Panel Connections .. 20
VME-EVG-230 Front Panel Connections ... 21

VME-EVG-230 VME P2 User I/O Pin Configuration .. 22

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Date: 06 July 2015

Issue: 1

Page: 2 of 57

Author: Jukka Pietarinen

cPCI-EVG-300 Front Panel Connections .. 22
PXIe-EVG-300 Front Panel Connections ... 23
PXIe-EVG-300 Backplane Connections ... 23

Programming Details ... 25
VME-EVG-230 CR/CSR Support ... 25

Function 0/1/2 Registers .. 25
VME-EVG-230 Network Interface ... 27

Assigning an IP Address to the Module .. 27
Using Telnet to Configure Module .. 27

Boot Configuration (command b) ... 27
Memory dump (command d) ... 28
Memory modify (commands d and m) .. 28
Upgrading IP2022 Microprocessor Software (command u) .. 29
Linux ... 29
Windows .. 29

Upgrading FPGA Configuration File .. 29
Linux ... 29
Windows .. 29
Linux ... 30
Windows .. 30

UDP Remote Programming Protocol .. 30
Read Access (Type 0x01) .. 31
Write Access (Type 0x02) ... 31

Register Map ... 32
Application Programming Interface (API) .. 48

Function Reference .. 48
int EvgOpen(struct MrfEgRegs **pEg, char *device_name); .. 48
int EvgClose(int fd); .. 49
int EvgEnable(volatile struct MrfEgRegs *pEg, int state); ... 49
int EvgGetEnable(volatile struct MrfEgRegs *pEg); .. 49
int EvgRxEnable(volatile struct MrfEgRegs *pEg, int state); ... 49
int EvgRxGetEnable(volatile struct MrfEgRegs *pEg); ... 49
int EvgGetViolation(volatile struct MrfEgRegs *pEg, int clear); ... 50
int EvgSWEventEnable(volatile struct MrfEgRegs *pEg, int state); 50
int EvgGetSWEventEnable(volatile struct MrfEgRegs *pEg); ... 50
int EvgSendSWEvent(volatile struct MrfEgRegs *pEg, int code); 50
int EvgEvanEnable(volatile struct MrfEgRegs *pEg, int state); ... 50
int EvgEvanGetEnable(volatile struct MrfEgRegs *pEg); .. 51
void EvgEvanReset(volatile struct MrfEgRegs *pEg); ... 51
void EvgEvanResetCount(volatile struct MrfEgRegs *pEg); ... 51
int EvgEvanGetEvent(volatile struct MrfEgRegs *pEg, struct EvanStruct *evan); 51
int EvgSetMXCPrescaler(volatile struct MrfEgRegs *pEg, int mxc, unsigned int presc); ... 51
int EvgSetMxcTrigMap(volatile struct MrfEgRegs *pEg, int mxc, int map); 52
void EvgSyncMxc(volatile struct MrfEgRegs *pEg); ... 52
void EvgMXCDump(volatile struct MrfEgRegs *pEg); ... 52
int EvgSetDBusMap(volatile struct MrfEgRegs *pEg, int dbus, int map); 52
void EvgDBusDump(volatile struct MrfEgRegs *pEg); ... 52

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Date: 06 July 2015

Issue: 1

Page: 3 of 57

Author: Jukka Pietarinen

int EvgSetACInput(volatile struct MrfEgRegs *pEg, int bypass, int sync, int div, int delay);

 ... 53
int EvgSetACMap(volatile struct MrfEgRegs *pEg, int map); ... 53
void EvgACDump(volatile struct MrfEgRegs *pEg); .. 53
int EvgSetRFInput(volatile struct MrfEgRegs *pEg, int useRF, int div); 53
int EvgSetFracDiv(volatile struct MrfEgRegs *pEg, int fracdiv); .. 54
int EvgSetSeqRamEvent(volatile struct MrfEgRegs *pEg, int ram, int pos, unsigned int

timestamp, int code); ... 54
void EvgSeqRamDump(volatile struct MrfEgRegs *pEg, int ram); 54
int EvgSeqRamControl(volatile struct MrfEgRegs *pEg, int ram, int enable, int single, int

recycle, int reset, int trigsel); ... 54
int EvgSeqRamSWTrig(volatile struct MrfEgRegs *pEg, int trig); 55
void EvgSeqRamStatus(volatile struct MrfEgRegs *pEg, int ram); 55
int EvgSetUnivinMap(volatile struct MrfEgRegs *pEg, int univ, int trig, int dbus); 55
void EvgUnivinDump(volatile struct MrfEgRegs *pEg); ... 55
int EvgSetTriggerEvent(volatile struct MrfEgRegs *pEg, int trigger, int code, int enable); 55
void EvgTriggerEventDump(volatile struct MrfEgRegs *pEg); ... 56
int EvgSetUnivOutMap(volatile struct MrfEgRegs *pEg, int output, int map); 56
int EvgSetDBufMode(volatile struct MrfEgRegs *pEg, int enable); 56
int EvgGetDBufStatus(volatile struct MrfEgRegs *pEg); .. 56
int EvgSendDBuf(volatile struct MrfEgRegs *pEg, char *dbuf, int size); 57

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 4 of 57

Safety Summary
The following general safety precautions must be observed during all phase of operation, service

and maintenance of this equipment. Failure to comply with these precautions could result in

personal injury or damage to the equipment.

Ground the Equipment.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an

electrical ground.

Keep away From Live Circuits inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service

Personnel or other qualified service personnel may remove equipment covers for internal

subassembly or component replacement or any internal adjustment. Service personnel should not

replace components with power cable connected.

Avoid touching areas of integrated circuitry; static discharge can damage the equipment.

Use of an antistatic wrist strap is recommended when installing a system.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment.

Contact Micro-Research Finland for service and repair.

Flammability
All Micro-Research Finland Oy PCBs (Printed Circuit Boards) are manufactured with a

flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution
This equipment generates, uses and can radiate electromagnetic energy. It may cause or be

susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI

protection.

CE Notice
This is a Class A product. In a domestic environment, this product may cause radio interference,

in which case the user may be required to take adequate measures.

This product has been designed to comply with the essential requirement of the following

European Directives:

Electromagnetic Compatibility (EMC) Directive 2004/108/EC, Low-Voltage Directive

2006/95/EC.

Conformity is assessed in accordance to the following standards:

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 5 of 57

EN55022 “Limits and Methods of Measurement of Radio Interference Characteristics of

Information Technology Equipment”; Equipment Class A

EN60950-1 (Safety)

Laser Eye Safety and Equipment Type Testing (Avago AFBR-57R5APZ transceivers):

(IEC) EN60825.1: 1994 + A11 + A2, (IEC) EN60825-2: 1994 + A1, (IEC) EN60950: 1992 + A1

+ A2 + A3 + A4 + A11

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 6 of 57

Hardware Installation

Installing the 3U Boards (cPCI-EVG-2x0 or PXIe-EVG-300) into a
Chassis
Use the following steps to install the module into the chassis:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Remove the filler panel for the slot you want to mount the board into.

3. Unpack the board you want to install from its ESD bag.

4. Open handle by pushing grey levers. The fastening screw in the handle may have turned

during transportation and prevent the handle from opening completely. Please use a

screwdriver and turn screw clockwise if the handle does not open properly.

5. Install the top and bottom edge of the board into the guide rails of the chassis.

6. Slide the board into the slot until resistance is felt.

7. Use handle to insert board into slot. Simultaneously help slightly from the upper area of

the front panel close to the countersunk screw. Do not push the board in using any other

area of the front panel.

8. Make sure handle is in locked position (closed) and grey lever have clicked into the

locked position.

9. Secure the board using the screw in the handle and top of board.

10. Connect appropriate cables to the board.

Installing the 6U Boards (VME-EVG-230 or cPCI-EVG-300) into a
Chassis
Use the following steps to install the module into the chassis:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Remove the filler panel for the slot you want to mount the board into.

3. Unpack the board you want to install from its ESD bag.

4. Open handles by pushing grey levers. Fastening screws in the handles may have turned

during transportation and prevent the handles from opening completely. Please use a

screwdriver and turn screws clockwise if the handles do not open properly.

5. Install the top and bottom edge of the board into the guide rails of the chassis.

6. Slide the board into the slot until resistance is felt.

7. Use handles to insert board into slot. Do not push the board in using the front panel.

8. Make sure handles are in locked position (closed) and grey levers have clicked into the

locked position.

9. Secure the board using the screws in the handles

10. Connect appropriate cables to the board.

Replacing SFP (Small Form Factor Pluggable) Transceivers
SFP Transceivers are hot-pluggable and replaceable during operation. To replace a SFP

transceiver use the following steps:

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 7 of 57

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Unplug any fibres connected to the transceiver you want to replace.

3. Pull out the transceiver using the transceiver handle that folds down.

4. Plug in a new transceiver.

5. Reconnect fibres.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 8 of 57

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 9 of 57

Introduction
The Event Generator is responsible of creating and sending out timing events to an array of Event

Receivers. High configurability makes it feasible to build a whole timing system with a single

Event Generator without external counters etc.

Events are sent out by the event generator as event frames (words) which consist of an eight bit

event code and an eight bit distributed bus data byte. The event transfer rate is derived from an

external RF clock or optionally an on-board clock generator. The optical event stream transmitted

by the Event Generator is phase locked to the clock reference.

There are several sources of events: trigger events, sequence events, software events and events

received from an upstream Event Generator. Events from different sources have different priority

which is resolved in a priority encoder.

In addition to events the Event Generator enables the distribution of eight simultaneous signals

sampled with the event clock rate, the distributed bus. Distributed bus signals may be provided

externally or generated on-board by programmable multiplexed counters.

Event Stream Details
The structure of the event stream is described to help understand the functioning of the event

system. The event stream should be considered as a continuous flow of event frames which

consist of two bytes, the event code and distributed bus data byte.

v
e
n
t

C
o
d
e

E

0

1

2

3

4

5

6

7

v
e
n
t

C
o
d
e

E

0

1

2

3

4

5

6

7

D
is

tr
ib

u
te

d
 B

u
s
 B

it
s

8B10B
encoding Transmitter

Fiber Optic Fiber Optic
encoding

8B10B
decodingReceiver

D
is

tr
ib

u
te

d
 B

u
s
 B

it
s

Event Generator Event Receiver

Figure 1: Event Frame

Event Codes

There are 256 event codes from which a few have special functions. The special function event

codes are listed below. Only one event code may be transferred at a time. If there is no event code

to be transferred, the null event code (0x00) is transmitted. Every now and then a special 8B10B

character K28.5 is transmitted instead of the null event code. The K28.5 comma character is

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 10 of 57

transmitted to allow the event receivers to synchronise on the correct word boundary is the serial

bit stream.

Event Code Code Name EVG Function EVR Function

0x00 Null Event Code - -

0x01 – 0x6F - User Defined User Defined

0x70 Seconds ‘0’ - Shift in ‘0’ to LSB of

Seconds Shift Register

0x71 Seconds ‘1’ - Shift in ‘1’ to LSB of

Seconds Shift Register

0x72 – 0x79 - User Defined User Defined

0x7A Heartbeat - Reset Heartbeat Monitor

0x7B Synchronise Prescalers - Synchronise Prescaler

Outputs

0x7C Timestamp Counter

Increment

- Increment Timestamp

Counter

0x7D Timestamp Counter Reset - Reset Timestamp Counter

0x7F End of Sequence Stop Sequence -

0x80-FF - User Defined User Defined

Distributed Bus and Data Transmission

The distributed bus allows transmission of eight simultaneous signals with the event clock rate

time resolution (10 ns at 100 MHz event clock rate). The source for distributed bus signals may

come from an external source or the signals may be generated with programmable multiplexed

counters (MXC) inside the event generator. The distributed bus signals may be programmed to be

available as hardware outputs on the event receiver.

In latest firmware versions the distributed bus bandwidth may be shared by transmission of a

configurable size data buffer to up to 2 kbytes. When data transmission is enabled the distributed

bus bandwidth is halved. The remaining bandwidth is reserved for transmitting data with a speed

up to 50 Mbytes/s (event clock rate divided by two).

Event Sources

Trigger Events

There are eight trigger event sources that send out an event code on a stimulus. Each trigger event

has its own programmable event code register and various enable bits. The event code transmitted

is determined by contents of the corresponding event code register. The stimulus may be a

detected rising edge on an external signal or a rising edge of a multiplexed counter output.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 11 of 57

TEVx
event
code
reg.

rising-edge detector

ACEV0

enable
AC mains

logic
voltage sync.

counter x
multiplexed

rising-edge detector

rising-edge detector

enable

to priority
encoder

Trigger Event
enable bit

enable

MXCEVx

event 0
Trigger

only

minimum width 10 ns

TTL trigger input x

ENEVx

Figure 2: Trigger Events

Trigger Event 0 has also the option of being triggered by a rising edge of the AC mains voltage

synchronization logic output signal.

The external input accepts TTL level signals. The input logic is edge sensitive and the signals are

synchronized internally to the event clock.

Upstream Events

Event Generators may be cascaded. The event generator receiver includes a first-in-first-out

(FIFO) memory to synchronize incoming events which may be synchronized to a clock unrelated

to the event clock. Usually there are no events in the FIFO. An event code from an upstream EVG

is transmitted as soon as there is no other event code to be transmitted.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 12 of 57

e
v
e
n
t

c
o
d
e

event FIFO
512-event

RSFIFO DFIFO

to priority
encoder

FF
fifo full flag

reset disable
FIFO FIFO

from
upstream

EVG

Figure 3: Upstream Event FIFO

Event Sequencer

Event sequencers provide a method of transmitting or playing back sequences of events stored in

random access memory with defined timing. In the event generator there are two event

sequencers. The 8-bit event codes are stored in a RAM table each attached with a 32-bit

timestamp relative to the start of sequence. Both sequencers can hold up to 2048 event code –

timestamp pairs.

event address / timestamp code

event address / timestamp code

event address / timestamp code

event address / timestamp code

0

ram address 32 bits 8 bits

1. event

1

2047

2. event

3. event

2048. event

2

Figure 4: Sequencer RAM Structure

The contents of a sequencer RAM may be altered at any time, however, it is recommended only

to modify RAM contents when the RAM is disabled. The sequencer runs at the event clock rate to

up to 100 MHz.

The Sequencers may be triggered from several sources including software triggering, triggering

on a multiplexed counter output or AC mains voltage synchronization logic output.

The sequencers are enabled by writing a ‘1’ bit to SQxEN in the Sequence RAM control Register.

The RAMs may be disabled any time by writing a ‘1’ to SQxDIS bit. Disabling sequence RAMs

does not reset the RAM address and timestamp registers. By writing a ‘1’ to the bit SQxRES in

the Control Register the sequencer is both disabled and the RAM address and timestamp register

is reset.

When the sequencer is triggered the internal event address counters starts counting. The counter

value is compared to the event address of the next event in the RAM table. When the counter

value matches or is greater than the timestamp in the RAM table, the attached event code is

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 13 of 57

transmitted. The time offset between two consecutive events in the RAM is allowed to be 1 to 232

sequence clock cycles i.e. the internal event address counter rolls over when to 0 when 0xffffffff

is reached.

There are two special event codes which are not transmitted, the null event code 0x00 and end

sequence code 0x7f. The null event code may be used if the time between two consecutive events

should exceed 232 event clock cycles by inserting a null event with a timestamp value of

0xffffffff. The end sequence code resets the sequencer RAM table address and timestamp register

and depending on configuration bits, disables the sequencer (single sequence, SQxSNG=1) or

restarts the sequence either immediately (recycle sequence, SQxREC=1) or waits for a new

trigger (SQxREC=0).

reset
address

trigger

sequence
running

reset
address

not single and not
recycle SSEQx=0

not single and recycle

send event code
(not null, freeze
end sequence) &
increment addr.

code (0x7f)
sequence

end

enable

disabled

disable

single
sequence

SSEQx=1

reset
sequence

SSEQx=0 and RCYLx=1

and RCYLx=0

sequencer disabled sequencer enabled

sequencer sequencer
stopped

when timestamps
match

Figure 5: Sequencer Control

Sequencer Interrupt Support

The sequencers provide two interrupts: a sequence start and sequence stop interrupt. The

sequence start interrupt is issued when a sequencer is in enabled state, gets triggered and was not

running before the trigger.

A sequence stop interrupt is issued when the sequence is running and reaches the ‘end of

sequence’ code.

Distributed Bus
The bits of the distributed bus are sampled at the event rate from external signals; alternatively

the distributed bus signals may be generated by multiplexed counter outputs. If there is an

upstream EVG, the state of all distributed bus bits may be forwarded by the EVG.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 14 of 57

Distributed bus
TTL input x

event clk
Q

D

multiplexed
counter output x

MXDENx

1

0

signal x from
Distributed bus

upstream EVG

DBUS

1

0

Distributed
bus transmit

Figure 6: Distributed Bus

Timestamping Inputs

Starting from firmware version E306 a few distributed bus input signals have dual function:

transition board input DBUS5-7 can be used to generate special event codes controlling the

timestamping in Event Receivers.

seconds counter

seconds counter

trigger event code 0x7D

trigger event code 0x70

trigger event code 0x71

distributed bus bit 4

e.g. 1 Hz
timestamp reset

DBUS4
timestamp clock

e.g. 1 MHz

'0' input

'1' input

DBUS5

DBUS6

DBUS7

Figure 7: Timestamping Inputs

The two clocks, timestamp clock and timestamp reset clock, are assumed to be rising edge

aligned. In the EVG the timestamp reset clock is sampled with the falling edge of the timestamp

clock. This is to prevent a race condition between the reset and clock signals. In the EVR the reset

is synchronised with the timestamp clock.

The two seconds counter events are used to shift in a 32-bit seconds value between consecutive

timestamp reset events. In the EVR the value of the seconds shift register is transferred to the

seconds counter at the same time the higher running part of the timestamp counter is reset.

The distributed bus event inputs can be enabled independently through the distributed bus event

enable register. The events generated through these distributed bus input ports are given lowest

priority.

Timestamp Generator

Logic has been added to automatically increment and send out the 32-bit seconds value. Using

this feature requires the two externally supplied clocks as shown above, but the events 0x70 and

0x71 get generated automatically.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 15 of 57

After the rising edge of the slower clock on DBUS4, the internal seconds counter is incremented

and the 32 bit binary value is sent out LSB first as 32 events 0x70 and 0x71. The seconds counter

can be updated by software by using the TSValue and TSControl registers.

Multiplexed Counters
Eight 32-bit multiplexed counters generate clock signals with programmable frequencies from

event clock/232-1 to event clock/2. Even divisors create 50% duty cycle signals. The counter

outputs may be programmed to trigger events, drive distributed bus signals and trigger sequence

RAMs. The output of multiplexed counter 7 is hard-wired to the mains voltage synchronization

logic.

reset

toggle
FF

32-bit prescaler register

reload

31-bit count-down counter
event
clock

=0

&

or

output

odd cycle extend by one

ext. reset
SW reset

Figure 8: Multiplexed Counter

Each multiplexed counter consists of a 32-bit prescaler register and a 31-bit count-down counter

which runs at the event clock rate. When count reaches zero, the output of a toggle flip-flop

changes and the counter is reloaded from the prescaler register. If the least significant bit of the

prescaler register is one, all odd cycles are extended by one clock cycle to support odd dividers.

Prescaler value Duty Cycle Frequency at 125 MHz Event

Clock

0, 1 not allowed undefined Undefined

2 50/50 62.5 MHz

3 33/66 41.7 MHz

4 50/50 31.25 MHz

5 40/60 25 MHz

… … …

232 – 1 approx. 50/50 0.029 Hz

The multiplexed counters may be reset by software or hardware input. The reset state is defined

by the multiplexed counter polarity register.

Configurable Size Data Buffer
Starting from firmware version E305 transmission of a configurable size data buffer over the

event system link is possible. The buffer size can be programmed in four byte increments (long

words) from 4 bytes to 2048 bytes.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 16 of 57

2 kbyte

buffer
data transmit
dual ported

enable
trigger

bufsize_words
tx_running

tx_complete

transmit

checksumming
engine andmemory

access
distributed
bus interface

Figure 9: Configurable size transmit data buffer

When the EVG is configured for data transmission (mode = 1 in data buffer control register) the

bandwidth of the distributed bus is shared with data transmission: half of the bandwidth remains

for the distributed bus and the other half is reserved for data transmission.

The data to be transmitted is stored in a 2 kbyte dual-ported memory starting from the lowest

address 0. This memory is directly accessible from VME. The transfer size is determined by

bufsize register bits in four byte increments. The transmission is trigger by software. Two flags

tx_running and tx_complete represent the status of transmission.

Transmission utilises two K-characters to mark the start and end of the data transfer payload, the

protocol looks following:

Table 1: Data Transmission Protocol

8B10B-character Description

K28.0 Start of data transfer

Dxx.x 1st data byte (address 0)

Dxx.x 2nd data byte (address 1)

Dxx.x 3rd data byte (address 2)

Dxx.x 4th data byte (address 3)

… …

Dxx.x nth data byte (address n-1)

K28.1 End of data

Dxx.x Checksum (LSB)

Dxx.x Checksum(MSB)

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 17 of 57

Programmable Front Panel Connections

The front panel outputs are programmable: multiplexed counters and distributed bus bits can be

mapped to any output. The mapping is shown in table below.

Table 2: Signal mapping IDs

Mapping ID Signal

0 to 31 (Reserved)

32 Distributed bus bit 0 (DBUS0)

… …

39 Distributed bus bit 7 (DBUS7)

40 Multiplexed Counter 0

… …

47 Multiplexed Counter 7

48 to 61 (Reserved)

62 Force output high (logic 1)

63 Force output low (logic 0)

AC Line Synchronisation
The Event Generator provides synchronization to the mains voltage frequency or another external

clock. The mains voltage frequency can be divided by an eight bit programmable divider. The

output of the divider may be delayed by 0 to 25.5 ms by a phase shifter in 0.1 ms steps to be able

to adjust the triggering position relative to mains voltage phase. After this the signal synchronized

to the event clock or the output of multiplexed counter 7.

RAM sequence 1

trigger

RAM sequence 2

Trigger event 0

ACSQ1

ACSQ2

ACEV0

D

Q

8-bit

prescaler

phase

shifter

divide by

1 to 256

delay of

0 to 25.5 ms

in 0.1 ms steps

ACDIV ACDEL

50-60 Hz mains

voltage freq.

 ACINTTL input

event clock

ACSYNC

counter 7

multiplexed

0

1 ACBYP

0

1

Figure 10: AC Input

´

The phase shifter operates with a clock of 1 MHz which introduces jitter. If the prescaler and

phase shifter are not required this circuit may be bypassed. This also reduces jitter because the

external trigger input is sampled directly with the event clock.

Event Clock
All operations on the event generator are synchronised to the event clock which is derived from

an externally provided RF clock. For laboratory testing purposes an on-board fractional

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 18 of 57

synthesiser may be used to deliver the event clock. The serial link bit rate is 20 times the event

clock rate. The acceptable range for the event clock and bit rate is shown in the following table.

 Event Clock Bit Rate

Minimum 50 MHz 1.0 Gb/s

Maximum 125 MHz 2.5 Gb/s
Note: maximum event clock for cPCI-EVG-220 is 100 MHz with 2.0 Gb/s bit rate

During operation the reference frequency should not be changed more than ±100 ppm.

RF Clock and Event Clock
The event clock may be derived from an external RF clock signal. The front panel RF input is 50

ohm terminated and AC coupled to a LVPECL logic input, so either an ECL level clock signal or

sine-wave signal with a level of maximum +10 dBm can be used.

Divider RF Input Frequency Event Clock Bit Rate

÷ 1 50 MHz – 125 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 2 100 MHz – 250 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 3 150 MHz – 375 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 4 200 MHz – 500 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 5 250 MHz – 625 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 6 300 MHz – 750 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 7 350 MHz – 875 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 8 400 MHz – 1.0 GHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 9 450 MHz – 1.125 MHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 10 500 MHz – 1.25 GHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 11 550 MHz – 1.375 GHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 12 600 MHz – 1.5 GHz 50 MHz – 125 MHz 1.0 Gb/s – 2.5 Gb/s

÷ 14 700 MHz – 1.6 GHz *) 50 MHz – 114 MHz 1.0 Gb/s – 2.286 Gb/s

÷ 15 750 MHz – 1.6 GHz *) 50 MHz – 107 MHz 1.0 Gb/s – 2.133 Gb/s

÷ 16 800 MHz – 1.6 GHz *) 50 MHz – 100 MHz 1.0 Gb/s – 2.0 Gb/s

÷ 17 850 MHz – 1.6 GHz *) 50 MHz – 94 MHz 1.0 Gb/s – 1.882 Gb/s

÷ 18 900 MHz – 1.6 GHz *) 50 MHz – 88 MHz 1.0 Gb/s – 1.777 Gb/s

÷ 19 950 MHz – 1.6 GHz *) 50 MHz – 84 MHz 1.0 Gb/s – 1.684 Gb/s

÷ 20 1.0 GHz – 1.6 GHz *) 50 MHz – 80 MHz 1.0 Gb/s – 1.600 Gb/s

÷ 21 1.05 GHz – 1.6 GHz *) 50 MHz – 76 MHz 1.0 Gb/s – 1.523 Gb/s

÷ 22 1.1 GHz – 1.6 GHz *) 50 MHz – 72 MHz 1.0 Gb/s – 1.454 Gb/s

÷ 23 1.15 GHz – 1.6 GHz *) 50 MHz – 69 MHz 1.0 Gb/s – 1.391 Gb/s

÷ 24 1.2 GHz – 1.6 GHz *) 50 MHz – 66 MHz 1.0 Gb/s – 1.333 Gb/s

÷ 25 1.25 GHz – 1.6 GHz *) 50 MHz – 64 MHz 1.0 Gb/s – 1.280 Gb/s

÷ 26 1.3 GHz – 1.6 GHz *) 50 MHz – 61 MHz 1.0 Gb/s – 1.230 Gb/s

÷ 27 1.35 GHz – 1.6 GHz *) 50 MHz – 59 MHz 1.0 Gb/s – 1.185 Gb/s

÷ 28 1.4 GHz – 1.6 GHz *) 50 MHz – 57 MHz 1.0 Gb/s – 1.142 Gb/s

÷ 29 1.45 GHz – 1.6 GHz *) 50 MHz – 55 MHz 1.0 Gb/s – 1.103 Gb/s

÷ 30 1.5 GHz – 1.6 GHz *) 50 MHz – 53 MHz 1.0 Gb/s – 1.066 Gb/s

÷ 31 1.55 GHz – 1.6 GHz *) 50 MHz – 51 MHz 1.0 Gb/s – 1.032 Gb/s

÷ 32 1.6 GHz *) 50 MHz 1.0 Gb/s

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 19 of 57

*) Range limited by AD9515 maximum input frequency of 1.6 GHz

Note: maximum event clock for cPCI-EVG-220 is 100 MHz with 2.0 Gb/s bit rate

Fractional Synthesiser

For laboratory testing purposes the event clock may be generated on-board the event generator

using a fractional synthesiser. A Micrel (http://www.micrel.com) SY87739L Protocol

Transparent Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following

table lists programming bit patterns for a few frequencies.

Event Rate Configuration Bit

Pattern

Reference Output Precision

(theoretical)

499.8 MHz/4

= 124.95 MHz

0x00FE816D 124.95 MHz 0

499.654 MHz/4

= 124.9135 MHz

0x0C928166 124.907 MHz -52 ppm

476 MHz/4

= 119 MHz

0x018741AD 119 MHz 0

106.25 MHz

(fibre channel)

0x049E81AD 106.25 MHz 0

499.8 MHz/5

= 99.96 MHz

0x025B41ED 99.956 MHz -40 ppm

50 MHz 0x009743AD 50.0 MHz 0

499.8 MHz/10

= 49.98 MHz

0x025B43AD 49.978 MHz -40 ppm

499.654 MHz/4

= 124.9135 MHz

0x0C928166 124.907 MHz -52 ppm

50 MHz 0x009743AD 50.0 MHz 0

http://www.micrel.com/

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 20 of 57

Connections

cPCI-EVG-2x0 Front Panel Connections
The front panel of the Event Generator and its optional side-by-side module is shown in Figure 11

and Figure 12.

R
F

TX RX

T
R

IG

UNIV0 UNIV1 UNIV2 UNIV3

L
N

K

E
V

T

O
F

F

M
ic

ro
-R

e
s

e
a

rc
h

P
X

I-
E

V
G

-2
2

0

Figure 11: Event Generator Front Panel

UNIV4 UNIV5 UNIV6 UNIV7M
ic

ro
-R

e
s

e
a

rc
h

P
X

I-
E

V
S

B
S

-2
2

0

UNIV8 UNIV9

Figure 12: Optional Side-by-side Module Front Panel

The front panel of the Event Generator includes the following connections and status leds:

Connector / Led Style Level Description

LNK Red/Green

Led

 Red: receiver violation detected

Green: RX link OK, violation flag

cleared

EVT Red/Green

Led

 Green: link OK, flashes when event

code received

Red: Flashes on led event

TX LC optical Transmit Optical Output (TX)

RX LC optical Receiver Optical Input (RX)

RF LEMO-EPY RF RF/event clock input

TRIG LEMO-EPY TTL AC Trigger input

UNIV0/1 Universal slot Universal Input 0/1

UNIV2/3 Universal slot Universal Input 2/3

UNIV4/5 Universal slot Universal Input 4/5

UNIV6/5 Universal slot Universal Input 6/7

UNIV8/9 Universal slot Universal Input 8/9

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 21 of 57

VME-EVG-230 Front Panel Connections
The front panel of the Event Generator is shown in Figure 11.

O
U

T
1

O
U

T
0

O
U

T
4

O
U

T
5

O
U

T
2

O
U

T
3

IN
0

IN
1

R
F

IN

M
ic

ro
R

e
s
e

a
rc

h

OFF

FAIL

ENA

RX
LINK

OUT ERR ACT

EVENT
IN

RX
FAIL RUN

10baseT 10/100 TX RX TTLTTL TTL TTL

A
C

IN

VME-EVG-230 TTL COMUNIV0 UNIV1 UNIV2 UNIV3

Figure 13: Event Generator Front Panel

The front panel of the Event Generator includes the following connections and status leds:

Connector / Led Style Level Description

FAIL Red Led Module Failure

OFF Blue Led Module Powered Down

RX LINK Green Led Receiver Link Signal OK

ENA Green Led Event Generator Enabled

EVENT IN Yellow Led Incoming Event (RX)

EVENT OUT Yellow Led Outgoing Event (TX)

RX FAIL Red Led Receiver Violation

ERR Red Led SY87739L reference not locked

RUN Green Led Ubicom IP2022 Running

ACT Yellow Led Ubicom IP2022 Telnet connection

active

10baseT RJ45 10baseT Ubicom 10baseT Ethernet

Connection with link (green) and

active (amber) leds

10/100 RJ45 (reserved)

TX LC optical Transmit Optical Output (TX)

RX LC optical Receiver Optical Input (RX)

ACIN LEMO-EPY TTL Trigger input

RFIN LEMO-EPY RF +10 dBm RF Reference Input

IN0 LEMO-EPY TTL Configurable front panel input

IN1 LEMO-EPY TTL Configurable front panel input

OUT0 LEMO-EPY TTL Configurable front panel output

OUT1 LEMO-EPY TTL Configurable front panel output

OUT2 LEMO-EPY TTL Configurable front panel output

OUT3 LEMO-EPY TTL Configurable front panel output

OUT4 LEMO-EPY TTL Configurable front panel output

OUT5 LEMO-EPY TTL Configurable front panel output

UNIV0 Universal I/O Configurable Universal I/O input

UNIV1 Universal I/O Configurable Universal I/O input

UNIV2 Universal I/O Configurable Universal I/O input

UNIV3 Universal I/O Configurable Universal I/O input

COM RJ45 RS232 Reserved

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 22 of 57

VME-EVG-230 VME P2 User I/O Pin Configuration

The following table lists the connections to the VME P2 User I/O Pins.

Pin Signal

A1 Transition board ID0

A2 Transition board ID1

A3-A10 Ground

A11 Transition board ID2

A12 Transition board ID3

A13-A15 Ground

A16 Transition board handle switch

A17-A26 Ground

A27-A31 +5V

A32 Power control for transition board

C1 Transition board input 0

C2 Transition board input 1

C3 Transition board input 2

C4 Transition board input 3

C5 Transition board input 4

C6 Transition board input 5

C7 Transition board input 6

C8 Transition board input 7

C9 Transition board input 8

C10 Transition board input 9

C11 Transition board input 10

C12 – C27 (reserved input)

C28 Transition board input 11

C29 Transition board input 12

C30 Transition board input 13

C31 Transition board input 14

C32 Transition board input 15

cPCI-EVG-300 Front Panel Connections

Figure 14: cPCI-EVG-300 Event Receiver Front Panel

Connector / Led Style Level Description

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

UNIV4/5 Universal slot Universal Output 4/5

UNIV6/7 Universal slot Universal Output 6/7

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 23 of 57

UNIV8/9 Universal slot Universal Output 8/9

UNIV10/11 Universal slot Universal Output 10/11

USB USB (USB Serial Port, reserved)

10/100 RJ45 (10/100 Ethernet, reserved)

TRIG Lemo TTL TTL AC Trigger Input

RF Lemo RF +10 dBm RF Reference Input

Link TX (SFP) LC Optical 850 nm Event link Transmit

Link RX (SFP) LC Optical 850 nm Event link Receiver

PXIe-EVG-300 Front Panel Connections

Figure 15: PXIe-EVG-300 Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

RX led RGB Led Red: receiver violation detected

Green: RX link OK, violation flag

cleared

Yellow: RX link OK, violation

detected

TX led RGB Led Green: link OK, flashes when event

code received

Red: Flashes on led event

LINK TX LC optical Transmit Optical Output (TX)

LINK RX LC optical Receiver Optical Input (RX)

RF LEMO-EPY RF RF/event clock input

TRIG LEMO-EPY TTL AC Trigger input

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

PXIe-EVG-300 Backplane Connections
The PXIe-EVG-300 provides a number of backplane I/O signals, conventional PXI timing and

synchronization signals and new differential signals introduced by the PXI Express specification.

The PXI trigger bus and the the PXI star triggers are bidirectional. The direction of the signal path

is specified by the output mapping register: the output has to be tri-stated for an external device to

drive the signal.

PXIe Signal EVG Input Signal EVG Output Signal Description

PXI_TRIG[0:7] TBIN[0:7] TBOUT[0:7] PXI trigger bus

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 24 of 57

PXI_STAR[0:16] TBIN[8:24] TBOUT[8:24] PXI star triggers

PXIe_DSTARA[0:16] n/a TBOUT[25:41] PXIe differential

LVPECL star

triggers

PXIe_DSTARB[0:16] n/a TBOUT[42:58] PXIe differential

LVDS star

triggers

PXIe_DSTARC[0:16]

TBIN[25:41] n/a PXIe differential

LVDS star input

signals

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 25 of 57

Programming Details

VME-EVG-230 CR/CSR Support
The VME Event Generator module provides CR/CSR Support as specified in the VME64x

specification. The CR/CSR Base Address Register is determined after reset by the inverted state

of VME64x P1 connector signal pins GA4*-GA0*. In case the parity signal GAP* does not

match the GAx* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which

corresponds to slot number 31.

Note: the board can be used in standard VME crates where geographical pins do not exist, in this

case the user may either insert jumpers to set the geographical address or use the default setting

when the board’s CR/CSR base address will be set to 0xf8.

After power up or reset the board responds only to CR/CSR accesses with its geographical

address. Prior to accessing Event Generator functions the board has to be configured by accessing

the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board ID etc. to identify

boards plugged in different VME slots. The following table lists the required field to locate an

Event Generator module.

CR address Register EVG

0x27, 0x2B, 0x2F Manufacturer’s ID (IEEE OUI) 0x000EB2

0x33, 0x37, 0x3B, 0x3F Board ID 0x454700E6

For convenience functions are provided to locate VME64x capable boards in the VME crate.

STATUS vmeCRFindBoard(int slot, UINT32 ieee_oui, UINT32 board_id,

 int *p_slot);

To locate the first Event Generator in the crate starting from slot 1, the function has to be called

following:

#include “vme64x_cr.h”

int slot = 1;

int slot_evg;

vmeCRFindBoard(slot, 0x000EB2, 0x454700E6, &slot_evg);

or
vmeCRFindBoard(slot, MRF_IEEE_OUI, MRF_4CHTIM_BID, &slot_evg);

If this function returns OK, an Event Generator board was found in slot slot_evg.

Function 0/1/2 Registers

The Event Generator specific register are accessed via Function 0, 1 or 2 as specified in the

VME64x specification. To enable Function 0, the address decoder compare register for Function

0 in CSR space has to be programmed. For convenience a function to perform this is provided:

STATUS vmeCSRWriteADER(int slot, int func, UINT32 ader);

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 26 of 57

To configure Function 0 of an Event Generator board in slot 3 to respond to A16 accesses at the

address range 0x1800-0x1FFF the function has to be called with following values:

vmeCSRWriteADER(3, 0, 0x18A4);

ADER contents are composed of the address mask and address modifier, the above is the same

as:

vmeCSRWriteADER(3, 0, (slot << 11) | (VME_AM_SUP_SHORT_IO << 2));

To get the memory mapped pointer to the configured Function 0 registers on the Event Generator

board the following VxWorks function has to be called:

MrfEvgStruct *pEvg;
sysBusToLocalAdrs(VME_AM_SUP_SHORT_IO, (char *) (slot << 11),

 (void *) pEvg);

Note: using the data transmission capability requires reserving more than 4 kbytes for function 0

i.e. use of addressing mode A24 is suggested, following:

vmeCSRWriteADER(3, 0, (slot << 19) | (VME_AM_STD_USR_DATA << 2));

MrfEvgStruct *pEvg;
sysBusToLocalAdrs(VME_AM_STD_USR_DATA, (char *) (slot << 19),

 (void *) pEvg);

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 27 of 57

VME-EVG-230 Network Interface
A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options.

It is also possible to control the module over the network interface.

Assigning an IP Address to the Module
By default the modules uses DHCP (dynamic host configuration protocol) to acquire an IP

address. In case a lease cannot be acquired the IP address set randomly in the 169.254.x.x subnet.

The board can be programmed to use a static address instead if DHCP is not available.

The module can be located looking at the lease log of the DHCP server or using a Windows tool

called Locator.exe.

Using Telnet to Configure Module
To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of

telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command Description

b Show/change boot parameters, IP address etc.

d Dump 16 bytes of memory

h / ? Show Help

i Read & show dynamic configuration values from FPGA

m <address> [<data>] Read/Write FPGA CR/CSR, Function 0

r Reset Board

s Save boot configuration & dynamic configuration values into non-

volatile memory

u Update IP2022 software

q Quit Telnet

Boot Configuration (command b)

Command b displays the current boot configuration parameters of the module. The parameter

may be changed by giving a new parameter value. The following parameters are displayed:

Parameter Description

Use DHCP 0 = use static IP address, 1 = use DHCP to acquire address, net mask

etc.

IP address IP address of module

Subnet mask Subnet mask of module

Default GW Default gateway

FPGA mode FPGA configuration mode

0 – FPGA is not configured after power up

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 28 of 57

1 – FPGA configured from internal Flash memory

2 – FPGA is configured from FTP server

FTP server FTP server IP address where configuration bit file resides

Username FTP server username

Password FTP server password

FTP Filename FTP server configuration file name

Flash Filename Configuration file name on internal flash

µs divider Integer divider to get from event clock to 1MHz, e.g. 125 for

124.9135 MHz

Fractional divider

configuration word

Micrel SY87739UMI fractional divider configuration word to set

refenrence for event clock

Note that after changing parameters the parameters have to be saved to internal flash by issuing

the Save boot configuration (s) command. The changes are applied only after resetting the

module using the reset command or hardware reset/power sequencing.

Memory dump (command d)

This command dumps 16 bytes of memory starting at the given address, if the address is omitted

the previous address value is increased by 16 bytes.

The most significant byte of the address determines the function of the access:

Address Function

0x00000000 CR/CSR space access

0x80000000 EVG registers access

To dump the start of the EVG register map issue the ‘d’ command from the telnet prompt:

VME-EVG-230 -> d 80000000 

Addr 80000000: d000 0001 0000 0000 0000 0000 0000 0000

VME-EVG-230 -> d 

Addr 80000010: 0000 0000 0000 0000 0000 0000 0000 0000

VME-EVG-230 ->

Memory modify (commands d and m)

The access size is always a short word i.e. two bytes.

To check the status register from the telnet prompt:

VME-EVG-230 -> m 80000000 

Addr 80000000 data d000

VME-EVG-230 ->

To enable the EVG issue:

VME-EVG-230 -> m 80000000 0000 

Addr 80000000 data 4001

VME-EVG-230 ->

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 29 of 57

Upgrading IP2022 Microprocessor Software (command u)

To upgrade the Ubicom IP2022 microprocessor software download the upgrade image containing

the upgrade to the module using TFTP:

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> put upgrade.bin /fw

tftp> quit

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT upgrade.bin /fw

When the upgrade image has been downloaded and verified, enter at the telnet prompt following:

VME-EVG-230 -> u 

Really update firmware (yes/no) ? yes 

Self programming triggered.

The Event Generator starts programming the new software and restarts.

Upgrading FPGA Configuration File
When the FPGA configuration file resides in internal flash memory a new file system image has

to be downloaded to the module. This is done using TFTP protocol:

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> put filesystem.bin /

tftp> quit

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT filesystem.bin /

Now the FPGA configuration file has been upgraded and the new configuration is loaded after

next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the

filesystem image before restarting the module. This is done following:

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 30 of 57

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> get / verify.bin

tftp> quit

$ diff filesystem.bin verify.bin

$

If files differ you should get following message:
Binary files filesystem.bin and verify.bin differ

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 GET / verify.bin

C:\> fc /b filesystem.bin verify.bin

Comparing files filesystem.bin and verify.bin

FC: no differences encountered

UDP Remote Programming Protocol
The VME-EVG can be remotely programmed using the 10baseT Ethernet interface with a

protocol over UDP (User Datagram Protocol) which runs on top of IP (Internet Protocol). The

default port for remote programming is UDP port 2000. The UDP commands are built upon the

following structure:

access_type (1 byte) status (1 byte) data (2 bytes)

address (4 bytes)

ref (4 bytes)

The first field defines the access type:

access_type Description

0x01 Read Register from module

0x02 Write and Read back Register from module

The second field tells the status of the access:

Status Description

0 Command OK

-1 Bus ERROR (Invalid read/write address)

-2 Timeout (FPGA did not respond)

-3 Invalid command

The access size is always a short word i.e. two bytes. The most significant byte of the address

determines the function of the access:

Address Function

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 31 of 57

0x00000000 CR/CSR space access

0x80000000 EVG registers access

Read Access (Type 0x01)

The host sends a UDP packet to port 2000 of the VME-EVG with the following contents:

access_type (1 byte)

0x01

status (1 byte)

0x00

data (2 bytes)

0x0000

address (4 bytes)

0x80000000 (Control and Status register Function 0 address)

ref (4 bytes)

0x00000000

If the read access is successful the VME-EVG replies to the same host and port the message came

from with the following packet:

access_type (1 byte)

0x01

status (1 byte)

0x00

data (2 bytes)

0xD000

address (4 bytes)

0x80000000 (Control and Status register Function 0 address)

ref (4 bytes)

0x00000000

Write Access (Type 0x02)

The host sends a UDP packet to port 2000 of the VME-EVG with the following contents:

access_type (1 byte)

0x02

status (1 byte)

0x00

data (2 bytes)

0x0001

Address (4 bytes)

0x80000002 (Event enable register Function 0 address)

ref (4 bytes)

0x00000000

If the write access is successful the VME-EVG replies to the same host and port the message

came from with the following packet:

access_type (1 byte)

0x02

status (1 byte)

0x00

data (2 bytes)

0x0001

address (4 bytes)

0x80000002 (Event enable register Function 0 address)

ref (4 bytes)

0x00000000

Notice that in the reply message the data returned really is the data read from the address

specified in the address field so one can verify that the data really was written ok.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 32 of 57

Register Map

Address Register Type Description

0x000 Status UINT32 Status Register

0x004 Control UINT32 Control Register

0x008 IrqFlag UINT32 Interrupt Flag Register

0x00C IrqEnable UINT32 Interrupt Enable Register

0x010 ACControl UINT32 AC divider control

0x014 ACMap UINT32 AC trigger event mapping

0x018 SWEvent UINT32 Software event register

0x020 DataBufControl UINT32 Data Buffer Control Register

0x024 DBusMap UINT32 Distributed Bus Mapping Register

0x028 DBusEvents UINT32 Distributed Bus Timestamping Events Register

0x02C FWVersion UINT32 Firmware Version Register

0x034 TSControl UINT32 Timestamp event generator control register

0x038 TSValue UINT32 Timestamp event generator value register

0x04C UsecDivider UINT32 Divider to get from Event Clock to 1 MHz

0x050 ClockControl UINT32 Event Clock Control Register

0x060 EvanControl UINT32 Event Analyser Control Register

0x064 EvanCode UINT32 Event Analyser Distributed Bus and Event

Code Register

0x068 EvanTimeHigh UINT32 Event Analyser Time Counter (bits 63 – 32)

0x06C EvanTimeLow UINT32 Event Analyser Time Counter (bits 31 – 0)

0x070 SeqRamCtrl0 UINT32 Sequence RAM 0 Control Register

0x074 SeqRamCtrl1 UINT32 Sequence RAM 1 Control Register

0x080 FracDiv UINT32 Micrel SY87739L Fractional Divider

Configuration Word

0x100 EvTrig0 UINT32 Event Trigger 0 Register

0x104 EvTrig1 UINT32 Event Trigger 1 Register

0x108 EvTrig2 UINT32 Event Trigger 2 Register

0x10C EvTrig3 UINT32 Event Trigger 3 Register

0x110 EvTrig4 UINT32 Event Trigger 4 Register

0x114 EvTrig5 UINT32 Event Trigger 5 Register

0x118 EvTrig6 UINT32 Event Trigger 6 Register

0x11C EvTrig7 UINT32 Event Trigger 7 Register

0x180 MXCCtrl0 UINT32 Multiplexed Counter 0 Control Register

0x184 MXCPresc0 UINT32 Multiplexed Counter 0 Prescaler Register

0x188 MXCCtrl1 UINT32 Multiplexed Counter 1 Control Register

0x18C MXCPresc1 UINT32 Multiplexed Counter 1 Prescaler Register

0x190 MXCCtrl2 UINT32 Multiplexed Counter 2 Control Register

0x194 MXCPresc2 UINT32 Multiplexed Counter 2 Prescaler Register

0x198 MXCCtrl3 UINT32 Multiplexed Counter 3 Control Register

0x19C MXCPresc3 UINT32 Multiplexed Counter 3 Prescaler Register

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 33 of 57

0x1A0 MXCCtrl4 UINT32 Multiplexed Counter 4 Control Register

0x1A4 MXCPresc4 UINT32 Multiplexed Counter 4 Prescaler Register

0x1A8 MXCCtrl5 UINT32 Multiplexed Counter 5 Control Register

0x1AC MXCPresc5 UINT32 Multiplexed Counter 5 Prescaler Register

0x1B0 MXCCtrl6 UINT32 Multiplexed Counter 6 Control Register

0x1B4 MXCPresc6 UINT32 Multiplexed Counter 6 Prescaler Register

0x1B8 MXCCtrl7 UINT32 Multiplexed Counter 7 Control Register

0x1BC MXCPresc7 UINT32 Multiplexed Counter 7 Prescaler Register

0x400 FPOutMap0 UINT16 Front Panel Output 0 Mapping Register

0x402 FPOutMap1 UINT16 Front Panel Output 1 Mapping Register

0x404 FPOutMap2 UINT16 Front Panel Output 2 Mapping Register

0x406 FPOutMap3 UINT16 Front Panel Output 3 Mapping Register

0x440 UnivOutMap0 UINT16 Universal Output 0 Mapping Register

0x442 UnivOutMap1 UINT16 Universal Output 1 Mapping Register

0x444 UnivOutMap2 UINT16 Universal Output 2 Mapping Register

0x446 UnivOutMap3 UINT16 Universal Output 3 Mapping Register

0x448 UnivOutMap4 UINT16 Universal Output 4 Mapping Register

0x44A UnivOutMap5 UINT16 Universal Output 5 Mapping Register

0x44C UnivOutMap6 UINT16 Universal Output 6 Mapping Register

0x44E UnivOutMap7 UINT16 Universal Output 7 Mapping Register

0x450 UnivOutMap8 UINT16 Universal Output 8 Mapping Register

0x452 UnivOutMap9 UINT16 Universal Output 9 Mapping Register

0x500 FPInMap0 UINT32 Front Panel Input 0 Mapping Register

0x504 FPInMap1 UINT32 Front Panel Input 1 Mapping Register

0x540 UnivInMap0 UINT32 Front Panel Universal Input 0 Map Register

0x544 UnivInMap1 UINT32 Front Panel Universal Input 1 Map Register

0x548 UnivInMap2 UINT32 Front Panel Universal Input 2 Map Register

0x54C UnivInMap3 UINT32 Front Panel Universal Input 3 Map Register

0x550 UnivInMap4 UINT32 Front Panel Universal Input 4 Map Register

0x554 UnivInMap5 UINT32 Front Panel Universal Input 5 Map Register

0x558 UnivInMap6 UINT32 Front Panel Universal Input 6 Map Register

0x55C UnivInMap7 UINT32 Front Panel Universal Input 7 Map Register

0x560 UnivInMap8 UINT32 Front Panel Universal Input 8 Map Register

0x564 UnivInMap9 UINT32 Front Panel Universal Input 9 Map Register

0x600 TBInMap0 UINT32 Transition Board Input 0 Mapping Register

0x604 TBInMap1 UINT32 Transition Board Input 1 Mapping Register

0x608 TBInMap2 UINT32 Transition Board Input 2 Mapping Register

0x60C TBInMap3 UINT32 Transition Board Input 3 Mapping Register

0x610 TBInMap4 UINT32 Transition Board Input 4 Mapping Register

0x614 TBInMap5 UINT32 Transition Board Input 5 Mapping Register

0x618 TBInMap6 UINT32 Transition Board Input 6 Mapping Register

0x61C TBInMap7 UINT32 Transition Board Input 7 Mapping Register

0x620 TBInMap8 UINT32 Transition Board Input 8 Mapping Register

0x624 TBInMap9 UINT32 Transition Board Input 9 Mapping Register

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 34 of 57

0x628 TBInMap10 UINT32 Transition Board Input 10 Mapping Register

0x62C TBInMap11 UINT32 Transition Board Input 11 Mapping Register

0x630 TBInMap12 UINT32 Transition Board Input 12 Mapping Register

0x634 TBInMap13 UINT32 Transition Board Input 13 Mapping Register

0x638 TBInMap14 UINT32 Transition Board Input 14 Mapping Register

0x63C TBInMap15 UINT32 Transition Board Input 15 Mapping Register

0x800 –

0xFFF

DataBuf Data Buffer Transmit Memory

0x1000 –

0x10FF

configROM

0x1100 –

0x11FF

scratchRAM

0x1200 –

0x12FF

SFPEEPROM SFP Transceiver EEPROM contents (SFP

address 0xA0)

0x1300 –

0x13FF

SFPDIAG SFP Transceiver diagnostics (SFP address

0xA2)

0x8000 –

0xBFFF

SeqRam0 Sequence RAM 0

0xC000 –

0xFFFF

SeqRam1 Sequence RAM 1

Status Register

address bit 31 bit 30 bit 29 Bit 28 bit 27 bit 26 bit 25 bit 24

0x000 RDB7 RDB6 RDB5 RDB4 RDB3 RDB2 RDB1 RDB0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x001 TDB7 TDB6 TDB5 TDB4 TDB3 TDB2 TDB1 TDB0

Bit Function

RDB7 Status of received distributed bus bit 7 (from upstream EVG)

RDB6 Status of received distributed bus bit 6 (from upstream EVG)

RDB5 Status of received distributed bus bit 5 (from upstream EVG)

RDB4 Status of received distributed bus bit 4 (from upstream EVG)

RDB3 Status of received distributed bus bit 3 (from upstream EVG)

RDB2 Status of received distributed bus bit 2 (from upstream EVG)

RDB1 Status of received distributed bus bit 1 (from upstream EVG)

RDB0 Status of received distributed bus bit 0 (from upstream EVG)

TDB7 Status of transmitted distributed bus bit 7

TDB6 Status of transmitted distributed bus bit 6

TDB5 Status of transmitted distributed bus bit 5

TDB4 Status of transmitted distributed bus bit 4

TDB3 Status of transmitted distributed bus bit 3

TDB2 Status of transmitted distributed bus bit 2

TDB1 Status of transmitted distributed bus bit 1

TDB0 Status of transmitted distributed bus bit 0

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 35 of 57

Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x004 EVGEN RXDIS RXPWD FIFORS SRST LEMDE MXCRES

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x005 SRALT

Bit Function

EVGEN Event Generator Master enable

RXDIS Disable event reception

RXPWD Receiver Power down

FIFORS Reset RX Event Fifo

SRST Soft reset IP

LEMDE Little endian mode (cPCI-EVG-300)

0 – PCI core in big endian mode (power up default)

1 – PCI core in little endian mode

MXCRES Write 1 to reset multiplexed counters

SRALT (reserved)

Interrupt Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x008

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00a IFSSTO1 IFSSTO0 IFSSTA1 IFSSTA0

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x00b IFEXT IFDBUF IFFF IFVIO

Bit Function

IFSSTO1 Sequence RAM 1 sequence stop interrupt flag

IFSSTO0 Sequence RAM 0 sequence stop interrupt flag

IFSSTA1 Sequence RAM 1 sequence start interrupt flag

IFSSTA0 Sequence RAM 0 sequence start interrupt flag

IFEXT External Interrupt flag

IFDBUF Data buffer flag

IFFF RX Event FIFO full flag

IFVIO Receiver violation flag

Interrupt Enable Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x00c IRQEN PCIIE

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x00e IESSTO1 IESSTO0 IESSTA1 IESSTA0

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 36 of 57

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x00f IEEXT IEDBUF IEFF IEVIO

Bit Function

IRQEN Master interrupt enable

PCIIE PCI core interrupt enable (cPCI-EVG-300)

This bit is used by the low level driver to disable further interrupts before

the first interrupt has been handled in user space

IESSTO1 Sequence RAM 1 sequence stop interrupt enable

IESSTO0 Sequence RAM 0 sequence stop interrupt enable

IESSTA1 Sequence RAM 1 sequence start interrupt enable

IESSTA0 Sequence RAM 0 sequence start interrupt enable

IEEXT External interrupt enable

IEDBUF Data buffer interrupt enable

IEFF Event FIFO full interrupt enable

IEVIO Receiver violation interrupt enable

AC Trigger Control Register

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x011 ACBYP ACSYNC

address bit 15 Bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x012 AC Trigger Divider

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x013 AC Trigger Phase Shift

Bit Function

ACBYP AC divider and phase shifter bypass (0 = divider/phase shifter enabled, 1

= divider/phase shifter bypassed)

ACSYNC Synchronization select (0 = event clock, 1 = multiplexed counter 7

output)

AC Trigger Mapping Register

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x017 ACM7 ACM6 ACM5 ACM4 ACM3 ACM2 ACM1 ACM0

Bit Function

ACM7 If set AC circuit triggers Event Trigger 7

ACM6 If set AC circuit triggers Event Trigger 6

ACM5 If set AC circuit triggers Event Trigger 5

ACM4 If set AC circuit triggers Event Trigger 4

ACM3 If set AC circuit triggers Event Trigger 3

ACM2 If set AC circuit triggers Event Trigger 2

ACM1 If set AC circuit triggers Event Trigger 1

ACM0 If set AC circuit triggers Event Trigger 0

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 37 of 57

Software Event Register

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x01A SWPEND SWENA

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x01B Event Code to be sent out

Bit Function

SWPEND Event code waiting to be sent out (read-only). A new event code may be

written to the event code register when this bit reads ‘0’.

SWENA Enable software event

Data Buffer Control Register

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x021 TXCPT TXRUN TRIG ENA MODE

address bit 15 Bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x022 DTSZ(10:8)

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x023 DTSZ(7:2) 0 0

Bits Function

TXCPT Data Buffer Transmission Complete

TXRUN Data Buffer Transmission Running – set when data

transmission has been triggered and has not been completed yet

TRIG Data Buffer Trigger Transmission

Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable

‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

MODE Distributed bus sharing mode

‘0’ – distributed bus not shared with data transmission

‘1’ – distributed bus shared with data transmission

DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

Distributed Bus Mapping Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x024 DBMAP7(3:0) DBMAP6(3:0)

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x025 DBMAP5(3:0) DBMAP4(3:0)

address bit 15 Bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x026 DBMAP3(3:0) DBMAP2(3:0)

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 38 of 57

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x027 DBMAP1(3:0) DBMAP0(3:0)

Bits Function

DBMAP7(3:0) Distributed Bus Bit 7 Mapping:

0 – Off, output logic ‘0’

1 – take bus bit from external input

2 – Multiplexed counter output mapped to distributed bus bit

3 – Distributed bus bit forwarded from upstream EVG

DBMAP6(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP5(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP4(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP3(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP2(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP1(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

DBMAP0(3:0) Distributed Bus Bit 7 Mapping (see above for mappings)

Distributed Bus Event Enable Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x02B DBEV7 DBEV6 DBEV5

Bits Function

DBEV5 Distributed bus input 5 “Timestamp reset” 0x7D event enable

DBEV6 Distributed bus input 6 “Seconds ‘0’” 0x70 event enable

DBEV7 Distributed bus input 7 “Seconds ‘1’” 0x71 event enable

FPGA Firmware Version Register

address bit 31 bit 27 bit 26 bit 24

0x02C EVG = 0x2 Form Factor

address bit 23 bit 8

0x02D Reserved

address bit 7 bit 0

0x02F Version ID

Bits Function
Form Factor 0 – CompactPCI 3U

1 – PMC

2 – VME64x

3 – CompactRIO

4 – CompactPCI 6U

6 – PXIe

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 39 of 57

7 – PCIe

Timestamp Generator Control Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x037 TSGENA TSGLOAD

Bits Function

TSGENA Timestamp Generator Enable (‘0’ = disable, ‘1’ = enable)

TSGLOAD Timestamp Generator Load new value into Timestamp Counter

Write ‘1’ to load new value

Microsecond Divider Register

address bit 15 bit 0

0x04e Rounded integer value of 1 s * event clock

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register

should read 50. This value is used e.g. for the phase shifter in the AC input logic.

Clock Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x050 RFSEL2 RFSEL1 RFSEL0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x051 RFDIV5 RFDIV4 RFDIV3 RFDIV2 RFDIV1 RFDIV0

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x052 RECDCM
RUN

RECDCM
INITDONE

RECDCM
PSDONE

EVDCM
STOPPED

EVDCM
LOCKED

EVDCM
PSDONE

CGLOCK RECDCM
PSDEC

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x053 RECDCM

PSINC

RECDCM

RES

EVDCM

PSDEC

EVDCM

PSINC

EVDCM

SRUN

EVDCM

SRES

EVDCM

RES

RXCLKSEL

Bit Function

RFDIV5-0 External RF divider select:

000000 – RF/1

000001 – RF/2

000010 – RF/3

000011 – RF/4

000100 – RF/5

000101 – RF/6

000110 – RF/7

000111 – RF/8

001000 – RF/9

001001 – RF/10

001010 – RF/11

001011 – RF/12

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 40 of 57

001100 – OFF

001101 – RF/14

001110 – RF/15

001111 – RF/16

010000 – RF/17

010001 – RF/18

010010 – RF/19

010011 – RF/20

010100 – RF/21

010101 – RF/22

010110 – RF/23

010111 – RF/24

011000 – RF/25

011001 – RF/26

011010 – RF/27

011011 – RF/28

011100 – RF/29

011101 – RF/30

011110 – RF/31

011111 – RF/32
RFSEL2-0 RF reference select:

000 – Use internal reference (fractional synthesizer)

001 – Use external RF reference (front panel input through divider)

010 – PXIe 100 MHz clock

100 – Use recovered RX clock

110 – PXIe 10 MHz clock through clock multiplier

CGLOCK Micrel SY87739L locked (read-only)

Event Analyser Control Register

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x063 EVANE EVARS EVAOF EVAEN EVACR

Bits Function

EVANE Event Analyser FIFO not empty flag:

0 – FIFO empty

1 – FIFO not empty, events in FIFO

EVARS Event Analyser Reset

0 – not in reset

1 – reset

EVAOF Event Analyser FIFO overflow flag:

0 – no overflow

1 – FIFO overflow

EVAEN Event Analyser enable

0 – Event Analyser disabled

1 – Event Analyser enabled

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 41 of 57

EVACR Event Analyser 64 bit counter reset

0 – Counter running

1 – Counter reset to zero.

Event Analyser Data Register

address bit 15 bit 8 bit 7 bit 0

0x066 (reserved) Event Code

Event Analyser Counter Registers

address bit 31 bit 0

0x068 Event Analyser Counter Register (bits 63 – 32)

address bit 31 bit 0

0x06C Event Analyser Counter Register (bits 31 – 0)

Sequence RAM Control Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x070 SQ0RUN SQ0ENA

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x071 SQ0XTR SQ0XEN SQ0SWT SQ0SNG SQ0REC SQ0RES SQ0DIS SQ0EN

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x072

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x073 SQ0TSEL

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x074 SQ1RUN SQ1ENA

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x075 SQ1XTR SQ1XEN SQ1SWT SQ1SNG SQ1REC SQ1RES SQ1DIS SQ1EN

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x076

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x077 SQ1TSEL

Bit Function

SQxRUN Sequence RAM running flag (read-only)

SQxENA Sequence RAM enabled flag (read_only)

SQxSWT Sequence RAM software trigger, write ‘1’ to trigger

SQxSNG Sequence RAM single mode

SQxREC Sequence RAM recycle mode

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 42 of 57

SQxRES Sequence RAM reset, write ‘1’ to reset

SQxDIS Sequence RAM disable, write ‘1’ to disable

SQxEN Sequence RAM enable, write ‘1’ to enable/arm

SQxXEN Sequence RAM allow external enable, ‘1’ - allow

SQxXTR Sequence RAM allow external trigger enable, ‘1’ - allow

SQxTSEL Sequence RAM trigger select:

0 – trigger from MXC0

1 – trigger from MXC1

2 – trigger from MXC2

3 – trigger from MXC3

4 – trigger from MXC4

5 – trigger from MXC5

6 – trigger from MXC6

7 – trigger from MXC7

16 – trigger from AC synchronization logic

17 – trigger from sequence RAM 0 software trigger

18 – trigger from sequence RAM 1 software trigger

24 – trigger from sequence RAM 0 external trigger

25 – trigger from sequence RAM 1 external trigger

31 – trigger disabled (default after power up)

SY87739L Fractional Divider Configuration Word

address bit 31 bit 0

0x080 SY87739L Fractional Divider Configuration Word

Configuration Word Frequency with 24 MHz reference oscillator

0x0C928166 124.907 MHz

0x0C9282A6 62.454 MHz

0x009743AD 50 MHz

0xC25B43AD 49.978 MHz

0x0176C36D 49.965 MHz

Event Trigger Registers

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x102 EVEN0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x103 EVCD0(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x106 EVEN1

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x107 EVCD1(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 43 of 57

0x10A EVEN2

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x10B EVCD2(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x10E EVEN3

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x10F EVCD3(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x102 EVEN4

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x103 EVCD4(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x106 EVEN5

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x107 EVCD5(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x10A EVEN6

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x10B EVCD6(7:0)

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x10E EVEN7

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x10F EVCD7(7:0)

Bit Function

EVENx Enable Event Trigger x

EVCDx Event Trigger Code for Event trigger x

Multiplexed Counter Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x180 MXC0 MXP0

address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x183 MX0EV7 MX0EV6 MX0EV5 MX0EV4 MX0EV3 MX0EV2 MX0EV1 MX0EV0

address bit 31 bit 0

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 44 of 57

0x184 Multiplexed Counter 0 prescaler

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x188 MXC1 MXP1

address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x18B MX1EV7 MX1EV6 MX1EV5 MX1EV4 MX1EV3 MX1EV2 MX1EV1 MX1EV0

address bit 31 bit 0

0x18C Multiplexed Counter 1 prescaler

Address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x190 MXC2 MXP2

Address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x193 MX2EV7 MX2EV6 MX2EV5 MX2EV4 MX2EV3 MX2EV2 MX2EV1 MX2EV0

address bit 31 bit 0

0x194 Multiplexed Counter 2 prescaler

Address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x198 MXC3 MXP3

Address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x19B MX3EV7 MX3EV6 MX3EV5 MX3EV4 MX3EV3 MX3EV2 MX3EV1 MX3EV0

address bit 31 bit 0

0x19C Multiplexed Counter 3 prescaler

Address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x1A0 MXC4 MXP4

Address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x1A3 MX4EV7 MX4EV6 MX4EV5 MX4EV4 MX4EV3 MX4EV2 MX4EV1 MX4EV0

address bit 31 Bit 0

0x1A4 Multiplexed Counter 4 prescaler

Address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 Bit 24

0x1A8 MXC5 MXP5

Address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x1AB MX5EV7 MX5EV6 MX5EV5 MX5EV4 MX5EV3 MX5EV2 MX5EV1 MX5EV0

address bit 31 bit 0

0x1AC Multiplexed Counter 5 prescaler

Address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 45 of 57

0x1B0 MXC6 MXP6

Address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x1B3 MX6EV7 MX6EV6 MX6EV5 MX6EV4 MX6EV3 MX6EV2 MX6EV1 MX6EV0

address bit 31 bit 0

0x1B4 Multiplexed Counter 6 prescaler

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x1B8 MXC7 MXP7

address Bit 7 bit 6 bit 5 Bit 4 Bit 3 bit 2 bit 1 bit 0

0x1BB MX7EV7 MX7EV6 MX7EV5 MX7EV4 MX7EV3 MX7EV2 MX7EV1 MX7EV0

address bit 31 Bit 0

0x1BC Multiplexed Counter 7 prescaler

Bit Function

MXCx Multiplexed counter output status (read-only)

MXPx Multiplexed counter output polarity

MXxEV7 Map rising edge of multiplexed counter x to send out event trigger 7

MXxEV6 Map rising edge of multiplexed counter x to send out event trigger 6

MXxEV5 Map rising edge of multiplexed counter x to send out event trigger 5

MXxEV4 Map rising edge of multiplexed counter x to send out event trigger 4

MXxEV3 Map rising edge of multiplexed counter x to send out event trigger 3

MXxEV2 Map rising edge of multiplexed counter x to send out event trigger 2

MXxEV1 Map rising edge of multiplexed counter x to send out event trigger 1

MXxEV0 Map rising edge of multiplexed counter x to send out event trigger 0

Front Panel Output Mapping Registers

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x401 Front panel OUT0 Mapping ID (see Table 2 for mapping IDs)

0x403 Front panel OUT1 Mapping ID

0x405 Front panel OUT2 Mapping ID

0x407 Front panel OUT3 Mapping ID
Notes:

cPCI-EVG does not have any Front panel outputs.

VME-EVG-230 has four Front panel outputs OUT0 to OUT3.

Universal Output Mapping Registers

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x441 Universal I/O OUT0 Mapping ID (see Table 2 for mapping IDs)

0x443 Universal I/O OUT1 Mapping ID

0x445 Universal I/O OUT2 Mapping ID

0x447 Universal I/O OUT3 Mapping ID

0x449 Universal I/O OUT4 Mapping ID

0x44B Universal I/O OUT5 Mapping ID

0x44D Universal I/O OUT6 Mapping ID

0x44F Universal I/O OUT7 Mapping ID

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 46 of 57

0x451 Universal I/O OUT8 Mapping ID

0x453 Universal I/O OUT9 Mapping ID
Notes:
cPCI-EVG has a maximum of four Universal I/O outputs and six additional outputs are provided by the optional side-by-side module.

VME-EVG-230 has a maximum four Universal I/O outputs.

Front Panel Input Mapping Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x500 FP0IRQ

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x501 FP0DB7 FP0DB6 FP0DB5 FP0DB4 FP0DB3 FP0DB2 FP0DB1 FP0DB0

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x502 FP0SEN1 FP0SEN0 FP0SEQ1 FP0SEQ0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x503 FP0EV7 FP0EV6 FP0EV5 FP0EV4 FP0EV3 FP0EV2 FP0EV1 FP0EV0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x505 FP1DB7 FP1DB6 FP1DB5 FP1DB4 FP1DB3 FP1DB2 FP1DB1 FP1DB0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x507 FP1EV7 FP1EV6 FP1EV5 FP1EV4 FP1EV3 FP1EV2 FP1EV1 FP1EV0

Bit Function

FPxIRQ Map Front panel Input x to External Interrupt

FPxDB7 Map Front panel Input x to Distributed Bus bit 7

FPxDB6 Map Front panel Input x to Distributed Bus bit 6

FPxDB5 Map Front panel Input x to Distributed Bus bit 5

FPxDB4 Map Front panel Input x to Distributed Bus bit 4

FPxDB3 Map Front panel Input x to Distributed Bus bit 3

FPxDB2 Map Front panel Input x to Distributed Bus bit 2

FPxDB1 Map Front panel Input x to Distributed Bus bit 1

FPxDB0 Map Front panel Input x to Distributed Bus bit 0

FPxSEN1 Map Front panel Input x to Sequence External Enable 1

FPxSEN0 Map Front panel Input x to Sequence External Enable 0

FPxSEQ1 Map Front panel Input x to Sequence Trigger 1

FPxSEQ0 Map Front panel Input x to Sequence Trigger 0

FPxEV7 Map Front panel Input x to Event Trigger 7

FPxEV6 Map Front panel Input x to Event Trigger 6

FPxEV5 Map Front panel Input x to Event Trigger 5

FPxEV4 Map Front panel Input x to Event Trigger 4

FPxEV3 Map Front panel Input x to Event Trigger 3

FPxEV2 Map Front panel Input x to Event Trigger 2

FPxEV1 Map Front panel Input x to Event Trigger 1

FPxEV0 Map Front panel Input x to Event Trigger 0

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 47 of 57

Universal Input Mapping Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x540 UI0IRQ

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x541 UI0DB7 UI0DB6 UI0DB5 UI0DB4 UI0DB3 UI0DB2 UI0DB1 UI0DB0

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x542 UI0SEN1 UI0SEN0 UI0SEQ1 UI0SEQ0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x543 UI0EV7 UI0EV6 UI0EV5 UI0EV4 UI0EV3 UI0EV2 UI0EV1 UI0EV0

Bit Function

UIxIRQ Map Universal Input x to External Interrupt

UIxDB7 Map Universal Input x to Distributed Bus bit 7

UIxDB6 Map Universal Input x to Distributed Bus bit 6

UIxDB5 Map Universal Input x to Distributed Bus bit 5

UIxDB4 Map Universal Input x to Distributed Bus bit 4

UIxDB3 Map Universal Input x to Distributed Bus bit 3

UIxDB2 Map Universal Input x to Distributed Bus bit 2

UIxDB1 Map Universal Input x to Distributed Bus bit 1

UIxDB0 Map Universal Input x to Distributed Bus bit 0

UIxSEN1 Map Front panel Input x to Sequence External Enable 1

UIxSEN0 Map Front panel Input x to Sequence External Enable 0

UIxSEQ1 Map Front panel Input x to Sequence Trigger 1

UIxSEQ0 Map Front panel Input x to Sequence Trigger 0

UIxEV7 Map Universal Input x to Event Trigger 7

UIxEV6 Map Universal Input x to Event Trigger 6

UIxEV5 Map Universal Input x to Event Trigger 5

UIxEV4 Map Universal Input x to Event Trigger 4

UIxEV3 Map Universal Input x to Event Trigger 3

UIxEV2 Map Universal Input x to Event Trigger 2

UIxEV1 Map Universal Input x to Event Trigger 1

UIxEV0 Map Universal Input x to Event Trigger 0

Note: all enabled input signals are OR’ed together. So if e.g. distributed bus bit 0 has two sources

from universal input 0 and 1, if either of the inputs is active high also the distributed bus is active

high.

Transition Board Input Mapping Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x540 TI0IRQ

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x541 TI0DB7 TI0DB6 TI0DB5 TI0DB4 TI0DB3 TI0DB2 TI0DB1 TI0DB0

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 48 of 57

0x542 TI0SEN1 TI0SEN0 TI0SEQ1 TI0SEQ0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x543 TI0EV7 TI0EV6 TI0EV5 TI0EV4 TI0EV3 TI0EV2 TI0EV1 TI0EV0

Bit Function

TIxIRQ Map Universal Input x to External Interrupt

TIxDB7 Map Universal Input x to Distributed Bus bit 7

TIxDB6 Map Universal Input x to Distributed Bus bit 6

TIxDB5 Map Universal Input x to Distributed Bus bit 5

TIxDB4 Map Universal Input x to Distributed Bus bit 4

TIxDB3 Map Universal Input x to Distributed Bus bit 3

TIxDB2 Map Universal Input x to Distributed Bus bit 2

TIxDB1 Map Universal Input x to Distributed Bus bit 1

TIxDB0 Map Universal Input x to Distributed Bus bit 0

TIxSEN1 Map Front panel Input x to Sequence External Enable 1

TIxSEN0 Map Front panel Input x to Sequence External Enable 0

TIxSEQ1 Map Front panel Input x to Sequence Trigger 1

TIxSEQ0 Map Front panel Input x to Sequence Trigger 0

TIxEV7 Map Universal Input x to Event Trigger 7

TIxEV6 Map Universal Input x to Event Trigger 6

TIxEV5 Map Universal Input x to Event Trigger 5

TIxEV4 Map Universal Input x to Event Trigger 4

TIxEV3 Map Universal Input x to Event Trigger 3

TIxEV2 Map Universal Input x to Event Trigger 2

TIxEV1 Map Universal Input x to Event Trigger 1

TIxEV0 Map Universal Input x to Event Trigger 0

Note: all enabled input signals are OR’ed together. So if e.g. distributed bus bit 0 has two sources

from universal input 0 and 1, if either of the inputs is active high also the distributed bus is active

high.

Application Programming Interface (API)
A Linux device driver and application interface is provided to setup up the Event Generator.

Function Reference

int EvgOpen(struct MrfEgRegs **pEg, char *device_name);

Description Opens the EVG device for access. Simultaneous

accesses are allowed.

Parameters struct MrfEgRegs **pEg EvgOpen returns pointer to EVG registers by

memory mapping the I/O registers into user

space.

 char *device_name Holds the device name of the EVG, e.g.

/dev/ega3. The device names are set up by the

module_load script of the device driver.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 49 of 57

Return value Return file descriptor on success.

 Returns -1 on error.

int EvgClose(int fd);

Description Closes the EVG device after opening by

EvgOpen.

Parameters int fd File descriptor returned by EvgOpen

Return value Returns zero on success.

 Returns -1 on error.

int EvgEnable(volatile struct MrfEgRegs *pEg, int state);

Description Enables the EVG and allows sending event

codes.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int state 0: disable

1: enable

Return value Returns zero when EVG disabled

 Returns non-zero when EVG enabled

int EvgGetEnable(volatile struct MrfEgRegs *pEg);

Description Retrieves state of the EVG.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value Returns zero when EVG disabled

 Returns non-zero when EVG enabled

int EvgRxEnable(volatile struct MrfEgRegs *pEg, int state);

Description Enables/disables the EVG receiver.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int state 0: disable

1: enable

Return value Returns zero when RX disabled

 Returns non-zero when RX enabled

int EvgRxGetEnable(volatile struct MrfEgRegs *pEg);

Description Retrieves state of the EVG receiver.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value Returns zero when RX disabled

 Returns non-zero when RX enabled

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 50 of 57

int EvgGetViolation(volatile struct MrfEgRegs *pEg, int clear);

Description Get/clear EVG RX link violation status.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int clear 0: don’t clear

1: clear status

Return value Returns 0 when no violation detected.

Return non-zero when violation detected.

int EvgSWEventEnable(volatile struct MrfEgRegs *pEg, int state);

Description Enable sending of software event codes.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int state 0: disable

1: enable

Return value Returns zero when EVG SW events disabled

 Returns non-zero when EVG SW events

enabled

int EvgGetSWEventEnable(volatile struct MrfEgRegs *pEg);

Description Retrieve state of software event codes.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value Returns zero when EVG SW events disabled

 Returns non-zero when EVG SW events

enabled

int EvgSendSWEvent(volatile struct MrfEgRegs *pEg, int code);

Description Send software event code.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int code Event code to be sent out

Return value Returns code sent out.

int EvgEvanEnable(volatile struct MrfEgRegs *pEg, int state);

Description Enable/disable EVG event analyzer.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int state 0: disable

1: enable

Return value Returns zero when EVG event analyzer

disabled

 Returns non-zero when EVG SW event

analyzer enabled

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 51 of 57

int EvgEvanGetEnable(volatile struct MrfEgRegs *pEg);

Description Get EVG event analyzer state.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value Returns zero when EVG event analyzer

disabled

 Returns non-zero when EVG SW event

analyzer enabled

void EvgEvanReset(volatile struct MrfEgRegs *pEg);

Description Reset EVG event analyzer state.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value none

void EvgEvanResetCount(volatile struct MrfEgRegs *pEg);

Description Reset EVG event analyzer time counter

value.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgEvanGetEvent(volatile struct MrfEgRegs *pEg, struct
EvanStruct *evan);

Description Retrieve one event from event analyzer.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 struct EvanStruct *evan Pointer to event analyzer structure to store

one event. (see egapi.h for structure details).

Return value Returns zero on success.

Returns -1 if no events available in event

analyzer.

int EvgSetMXCPrescaler(volatile struct MrfEgRegs *pEg, int mxc,
unsigned int presc);

Description Set multiplexed counter prescaler.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int mxc Multiplexed counter number 0-7.

 unsigned int presc 32-bit prescaler value.

Return value Returns zero on success.

Returns -1 on error.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 52 of 57

int EvgSetMxcTrigMap(volatile struct MrfEgRegs *pEg, int mxc, int
map);

Description Set multiplexed counter to event trigger

mapping.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int mxc Multiplexed counter number 0-7.

 int map Number of event trigger to map to.

Return value Returns zero on success.

Returns -1 on error.

void EvgSyncMxc(volatile struct MrfEgRegs *pEg);

Description Synchronize multiplexed counters.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

void EvgMXCDump(volatile struct MrfEgRegs *pEg);

Description Dump multiplexed counter registers.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSetDBusMap(volatile struct MrfEgRegs *pEg, int dbus, int
map);

Description Set distributed bus bit mappings.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int dbus Distributed bus bit number 0-7.

 int map Distributed bus bit source:

C_EVG_DBUS_SEL_OFF: bit tied to zero

C_EVG_DBUS_SEL_EXT: external input

C_EVG_DBUS_SEL_MXC: multiplexed

counter

C_EVG_DBUS_SEL_FORWARD: from

upstream EVG

Return value Returns zero on success.

Returns -1 on error.

void EvgDBusDump(volatile struct MrfEgRegs *pEg);

Description Dump distributed bus registers.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 53 of 57

Return value None

int EvgSetACInput(volatile struct MrfEgRegs *pEg, int bypass, int
sync, int div, int delay);

Description Set AC input parameters.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int bypass 0: use AC sync logic

1: bypass phase shifter and divider

 int sync 0: don’t synchronize to MXC7

1: synchronize to MXC7

 int div Divider 1 – 255

 int delay Phase shift in approx. 0.1 ms steps

Return value Returns zero on success.

Returns -1 on error.

int EvgSetACMap(volatile struct MrfEgRegs *pEg, int map);

Description Set AC input event trigger mapping.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int map Number of event trigger to map to.

Return value Returns zero on success.

Returns -1 on error.

void EvgACDump(volatile struct MrfEgRegs *pEg);

Description Dump AC input registers.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSetRFInput(volatile struct MrfEgRegs *pEg, int useRF, int div);

Description Set up event clock RF input.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int useRF 0: use internal reference (fractional

synthesizer)

1: use external RF input

 int div C_EVG_RFDIV_1,

C_EVG_RFDIV_2, etc. see egapi.h for

details.

Return value Returns zero on success.

Returns -1 on error.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 54 of 57

int EvgSetFracDiv(volatile struct MrfEgRegs *pEg, int fracdiv);

Description Set fractional divider control word which

provides reference frequency for receiver.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int fracdiv Fractional divider control word

Return value Returns control word written

int EvgSetSeqRamEvent(volatile struct MrfEgRegs *pEg, int ram, int
pos, unsigned int timestamp, int code);

Description Write one event into Sequence RAM.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int ram Number of Sequence RAM

0: RAM0

1: RAM1

 int pos Event position in memory: 0 – 2047

 unsigned int timestamp Timestamp of event (32-bit)

 int code Event code (8-bit)

Return value Returns zero on success.

Returns -1 on error.

void EvgSeqRamDump(volatile struct MrfEgRegs *pEg, int ram);

Description Dump Sequence RAM registers.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSeqRamControl(volatile struct MrfEgRegs *pEg, int ram, int
enable, int single, int recycle, int reset, int trigsel);

Description Setup Sequence RAM

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int ram Number of Sequence RAM

0: RAM0

1: RAM1

 int enable 0: disable RAM

1: enable RAM

 int single 0: multi-sequence

1: single sequence

 int recycle 0: trigger mode

1: recycle mode (loop)

 int reset 1: reset RAM

 int trigsel See egapi.h

Return value Returns zero on success.

Returns -1 on error.

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 55 of 57

int EvgSeqRamSWTrig(volatile struct MrfEgRegs *pEg, int trig);

Description Software trigger Sequence RAM.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int trig 0: software trigger 0

1: software trigger 1

Return value Returns 0 on success.

Returns -1 on error.

void EvgSeqRamStatus(volatile struct MrfEgRegs *pEg, int ram);

Description Dump Sequence RAM status.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSetUnivinMap(volatile struct MrfEgRegs *pEg, int univ, int trig,
int dbus);

Description Set up universal input mappings.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int univ Number of universal input (0-3 for EVG, 4-9

for side-by-side module)

 int trig Number of event trigger to map to.

 int dbus Number of external distributed bus input to

map to.

Return value Returns 0 on success.

Returns -1 on error.

void EvgUnivinDump(volatile struct MrfEgRegs *pEg);

Description Dump Universal input mappings.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSetTriggerEvent(volatile struct MrfEgRegs *pEg, int trigger, int
code, int enable);

Description Set up trigger events.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int trigger Number of trigger event

 int code Event code

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 56 of 57

 int enable 0: disable

1: enable

Return value Returns 0 on success.

Returns -1 on error.

void EvgTriggerEventDump(volatile struct MrfEgRegs *pEg);

Description Dump Event trigger settings.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value None

int EvgSetUnivOutMap(volatile struct MrfEgRegs *pEg, int output, int
map);

Description Set up universal output mappings.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int output Universal Output number

 int map Signal mapping (see egapi.h for details)

Return value Returns 0 on success, -1 on error

int EvgSetDBufMode(volatile struct MrfEgRegs *pEg, int enable);

Description Enable/disable transmitter data buffer mode.

When data buffer mode is enabled every

other distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 int enable 0 – disable transmitter data buffer mode

1 – enable transmitter data buffer mode

Return value Transmit data buffer status (see Error!

Reference source not found. on page

Error! Bookmark not defined. for bit

definitions).

int EvgGetDBufStatus(volatile struct MrfEgRegs *pEg);

Description Get transmit data buffer status. When data

buffer mode is enabled every other

distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

Return value Transmit data buffer status (see Error!

Reference source not found. on page

Micro-Research Finland Oy
HIrsalantie 11, FIN-02420 Jorvas, Finland

 Document: EVG-MRM-0006

Page: 57 of 57

Error! Bookmark not defined. for bit

definitions).

int EvgSendDBuf(volatile struct MrfEgRegs *pEg, char *dbuf, int size);

Description Get transmit data buffer status. When data

buffer mode is enabled every other

distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfEgRegs *pEg Pointer to memory mapped EVG register

base.

 char *dbuf Pointer to local data buffer

 int size Size of data in bytes to be transmitted:

4, 8, 12, …, 2048.

Return value Size of buffer being sent.

-1 on error.

