Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Date: 06 JUIy 2015
Issue: 1

Page: 1 of 77
Author: Jukka Pietarinen

Event Receiver
cPCI-EVR-220, cPCI-EVR-230, PMC-EVR-230,
VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300,
cPCI-EVR-300, PCle-EVR-300
and PXle-EVR-300
Technical Reference

Firmware Version 0007

Contents
SAFELY SUMMAIY ...t bbbt bbbttt b et n et a e 5
Ground the EQUIPMENT.c.ooiiiieieieee e 5
Keep away From Live Circuits inside the EQUIPMENT.........cccvivieiiiicie e 5
Do Not Substitute Parts or Modify EQUIPMENL.cooiiiiiiiieie et 5
FIAMMEDTTITY ..o bbbt 5
Y IO T8 1 o SRS 5
(O [0 - PSSR 5
Hardware INSTAITATIONooiiiiie e sttt sre e sre e e 7
Installing the 3U Boards (cPCI-EVR-2x0 or PXle-EVR-300) into a Chassisccccevvrvieenne. 7
Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300 or cPCI-
EVR-300) INT0 8 ChaSSIScueviiiiieeiieieet et 7
Installing the PMC-EVR-230 Board onto & Carrierccooviirineieieieisesese e 7
Installing the PCle-EVR-300 Board into @ COMPULE.........cccccvieiiiiiieiesieee e 8
Replacing SFP (Small Form Factor Pluggable) TransCeIVErScccvvvecieieve e 8
00 114 T] o OSSR 9
FUNCLIONAL DESCIIPLIONvviviiic ettt sttt r et st e s be e e s beete e tesneenee e 9
EVENE DECOTING ..ottt sttt et st e st e e st e e be e besae e b e sbesaeesreetaeneens 9
L [oT T (o TT= R 1V, o]] | (o] SR 10
Event FIFO and Timestamp EVENTS........ccoi i 10
AV o1 I o O PP RU PRV URTOPTO 11
Distributed Bus and Data TranSmMiSSIONcccueiireerieiieiieseseeiesiesseesiesseeaeseseeseeseesneesees 11
e Rl 1ol 1o - o] SR 11
PIESCAIEIS. ... ettt ettt ettt ettt et R e be Rt n e e bRt et e eeeeneeneas 12
Programmable Front Panel, Universal 1/O and Backplane Connections............c.cccccceeveeenee. 12
Front Panel CML Outputs (VME-EVR-230RF ONlY)ccooiiiiiiiiiii e 13

CPCI-EVRTG-300 GTX Front Panel OQULPULS. ..o 15

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Date: 06 JUIy 2015
Issue: 1

Page: 2 of 77
Author: Jukka Pietarinen

Configurable Size Data BUFFErccooiiieiii e 20
INTEITUPT GENEIALIONcvicieciiciece sttt et s be s e besre e b e steeneesreereenaens 21
EXtErnal EVENT INPUL.........ooiiiie e 21
Programmable Reference CIOCK..........ccooiiiiiiiieic e 21
Fractional SYNThESISENccviieii it re e nas 22
Hardware Configuration SUMMAIYc.ccuiiiiiiieieeeeeses e 22
(00 1T T=Tod o] PSSR 23
CPCI-EVR-2X0 Front Panel CONNECLIONSoviiririiiinie ettt 23
VME-EVR-230 and VME-EVR-230RF Front Panel Connections...........c.ccocvvvevenenninienininns 24
VME P2 User 1/O Pin CoNfIQUIALIONcciiiiiirieieiccsesise s 25
PMC-EVR-230 Front Panel CONNECLIONScccviiiiiieeiee et 27
PMC-EVR-230 Pn4 User 1/O Pin Configurationccccceviiiiiniiiie e 27
CRIO-EVR-300 Front Panel CONNECLIONSc.ccviieiiiieiiesiesieie e eee e ste e s srae e see e 28
CPCI-EVRTG-300 Front Panel CONNECLIONSvcveievieeiesie e et st sra e 29
CPCI-EVR-300 Front Panel CONNECLIONS...........cuiiiirieieieisisesie et 29
PCle-EVR-300 and 1FB-300 CONNECLIONSocviiveierierieiisiisiesiesie et sne s 30
PXle-EVR-300 Front Panel CoNNECLIONS.cccviveieieeieie ettt 30
PXle-EVR-300 Backplane CONNEBCLIONSc.coeiuieieiiecicie sttt sre et 31
VME-EVR-230 and VME-EVR-230RF Network INterfaceccocoovveiniinieninieneseseseneiens 33
Assigning an 1P Address to the MOdUIE ..o 33
Using Telnet to Configure MOUIE.............coriiiiiiece s 33
Boot Configuration (COMMAaNd b)ccccoveiiiiiiiiiie e 33
Memory dump (COMMANG A)c.veviiiiiiiiie e 34
Memory modify (CoOmmaNnds d and M)ooirereieiii e 34
Tuning Delay Line (COMMANG 1)ooiiiiiiiiie ettt ra e 35
Upgrading 1P2022 Microprocessor Software (command U)...........ccccevveveveevienenieesesesnennes 35
01 USSR 35
AT 1o OSSR 35
Upgrading FPGA Configuration Fileccoiiiiiiiiii et 36
01 USSR 36

R AT T [0TSR 36
LLEUX ettt bbbt bRt eh bR bt b e b e e b e e be e erneenneere e 36

R AT T [0TSR 36
UDP Remote Programming ProtoCONcccoiiiiiiiiiiiii s 37
Read ACCESS (TYPE OX0L)....uiieeieiieiie ettt ettt s et et sbeese e besae e e resnneneas 37
Write ACCESS (TYPE OX02)....c.veiveeiieiiectieie sttt sttt te et st e s te e s beste e besbe e e tesneeseas 38
CRIO-EVR-300.......cteieietieie ettt sttt se et e s b et et et et e seebe e s e e bestestesae s eneenaareans 39
(00 0T T=Tod T SR 39
20101011V o] T (o] TSR PRPR 39
Firmware Upgrade (0N LiNUX)......cooiiiiiieiieieeeessesiese st 40
Programming DELAIIS.........c.ooviiiiiiii s 40
VME CR/CSR SUPPOIT ..ttt sttt see et s eneesessesbeseesteneeneeneenennens 40
Event Receiver Function 0,1 and 2 ReQISIErS.........couiiiiieeie e 42
cPCI-EVR-300 and PCle-EVR-300 Firmware Upgrade...........ccovrerererieinienineseseseeseeeeeseeas 42
T IS LT 1V - PSPPSR 44
SFP Module EEPROM and DiagnOSHICScceiiiieiiiiiie ettt 58
Application Programming INterface (API)cooiiiiiiii e 62

FUN G ON RETGIENCE. ... ettt e e e ettt et e e et e ettt e e e e e eee e areeeeeeen 62

Micro-Research Finland Oy Document: EVR-MRM-007
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Date: 06 JUIy 2015

Issue: 1

Page: 3 of 77

Author: Jukka Pietarinen
int EvrOpen(struct MrfErRegs **pEr, char *device_Name);ccccccveveeeieveerienesieese e 62
INEEVICIOSE(INT FA);.c.viiee e e bbbt 62
int EvrEnable(volatile struct MrfErRegs *pEr, Int State);cooeveiviiininien e 63
int EvrGetEnable(volatile struct MrfErREgS *PEr);ccoovviiiiiiieisiseeeneeeeee 63
void EvrDumpStatus(volatile struct MIfErRegs *pEr); ...ccovevvvieiiiiceee e, 63
int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear); ..o 63
void EvriDumpMapRam(volatile struct MrfErRegs *pEr, int ram);........cccocvvieieicininnnnn 63
int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int enable); 64
int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 64
int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int state);ccccccvvvnnnne 64
int EvrGetEventForwarding(volatile struct MrfErRegs *pEr); ... 64
int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 64
int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);........... 65
int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);.......... 65
int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 65
int EvrClearFIFO(volatile struct MrfErREQS *PEI);....c.ccoviieieieeie et 66
int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent *fe); 66
int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int enable);..........ccccceevvenenee. 66
int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);cccovvvvveievieve e 66
int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);...........ccooviiieneniiiiniins 66
int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable); ... 67
int EvrGetLogStart(volatile struct MIfErREgS *PEI); ...ccovoveieiieie e 67
int EvrGetLogEntries(volatile struct MrfErRegs *PEr);ccocooeiiieiiiinec e 67
void EviDumpFIFO(volatile struct MrfErREgS *PEI);cccvoeieiiieieiiise e 67
int EvrClearLog(volatile struct MrfErREQS *PEI); ...c.coviiiiieiiieeie et 67
void EvrDumpLog(volatile struct MIrfErRegSs *PEr);....cccccvveiiiiiiciecece e 67
int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int
(o1 L= OSSOSO SUSPRRORN 67
int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int
(0] [) SO PRSSN 68
int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int presc, int delay, int
LV L) RSOOSR PRRP 68
void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulSes);........ccoovvvrererereiinnncnn 68
int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int polarity, int
map_reset_ena, int map_set_ena, int map_trigger_ena, intenable);...........ccocevviiiiiiiennn, 69
int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int map);.........c.cce..... 69
void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int outputs);.........cccceevvvnnnnn 69
int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int map);cccccceevvvnnne 69
void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int OUtputs);cccccevevevveireennenne. 70
int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int Map);.......ccccocvevvvnnne 70
void EviDumpTBOutMap(volatile struct MrfErRegs *pEr, int OULPULS);.......ccoervervevrennnnn 70
void EvrlrgAssignHandler(volatile struct MrfErRegs *pEr, int fd, void (*handler)(int)); ... 70
int EvrirgEnable(volatile struct MrfErRegs *pEr, int mask);ccoceoeiieneernniiiieneeeeee 70
int EvrGetlrgFlags(volatile struct MrfErRegS *PEI); ... 71
int EvrClearlrgFlags(volatile struct MrfErRegs *pEr, int mask);ccccoooveviniiiieniee. 71
void EvrirgHandled(int fA);.......cooo e e 71
int EvrSetPulselrgMap(volatile struct MrfErRegs *pEr, int map);c.ccocvvvrenenniniiinnnns 71

int EvrUnivDIlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int enable);................. 71

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Date: 06 JUIy 2015
Issue: 1

Page: 4 of 77
Author: Jukka Pietarinen

int EvrUnivDIlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int dly0, int dly1); .. 72

int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);cccoovviviiiicicceeen, 72
int EvrGetFracDiv(volatile struct MIrfErREgS *PEI);ooviviiiiiiiieiiesesese e 72
int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable); ... 72
int EvrGetDBufStatus(volatile struct MIfErRegs *PEr); ...c.covviveieiecicie s 73
int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable); ... 73
int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int Size);........ccccooevviiiniinnnns 73
int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);cccoovvevevvivinn. 74
int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);cccoevvvvennen. 74
int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);cccovvvrviiieneicieieieens 74
int EvrGetSecondsCounter(volatile struct MrfErRegs *PEr);cccoovvviiriniieieieieeeeens 74
int EvrGetTimestampLatch(volatile struct MrfErRegs *PEr);ccccovevvevevivevieienieece e 74
int EvrGetSecondsLatch(volatile struct MrfErRegs *PEr);.....cccooviviiiiiineiiieieeeeseiens 74
int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);ccccoevviiiinnnnnns 75
int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int
1EVEL_BNADIE); ..o e e 75
int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int
1EVEL_BNADIE); ..o e 75
int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int edge);............... 76
int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int level); 76
int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);ccocoovvviiiinnnnns 76
int EvrGetTxDBufStatus(volatile struct MrfErRegs *PEr);cccccevvveveieveciiece e 76
int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int Size);c.cccceevvvenns 77

int EvrGetFormFactor(volatile struct MIfErRegs *PEr);ccovverieiiiiiieneeeeees 77

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 5of 77

Safety Summary

The following general safety precautions must be observed during all phase of operation, service
and maintenance of this equipment. Failure to comply with these precautions could result in
personal injury or damage to the equipment.

Ground the Equipment.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an
electrical ground.

Keep away From Live Circuits inside the Equipment.

Operating personnel must not remove equipment covers. Only Factory Authorized Service
Personnel or other qualified service personnel may remove equipment covers for internal
subassembly or component replacement or any internal adjustment. Service personnel should not
replace components with power cable connected.

Avoid touching areas of integrated circuitry; static discharge can damage the equipment.

Use of an antistatic wrist strap is recommended when installing a system.

Do Not Substitute Parts or Modify Equipment.

Do not install substitute parts or perform any unauthorized modification of the equipment.
Contact Micro-Research Finland for service and repair.

Flammability

All Micro-Research Finland Oy PCBs (Printed Circuit Boards) are manufactured with a
flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution

This equipment generates, uses and can radiate electromagnetic energy. It may cause or be
susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI
protection.

CE Notice

This is a Class A product. In a domestic environment, this product may cause radio interference,
in which case the user may be required to take adequate measures.

This product has been designed to comply with the essential requirement of the following
European Directives:

Electromagnetic Compatibility (EMC) Directive 2004/108/EC, Low-Voltage Directive
2006/95/EC.

Conformity is assessed in accordance to the following standards:

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 6 of 77

EN55022 “Limits and Methods of Measurement of Radio Interference Characteristics of
Information Technology Equipment”; Equipment Class A

EN60950-1 (Safety)
Laser Eye Safety and Equipment Type Testing (Avago AFBR-57R5APZ transceivers):

(IEC) EN60825.1: 1994 + A11 + A2, (IEC) EN60825-2; 1994 + A1, (IEC) EN60950: 1992 + Al
+A2+A3+A4+All

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 7of 77

Hardware Installation

Installing the 3U Boards (cPCI-EVR-2x0 or PXle-EVR-300) into a
Chassis
Use the following steps to install the module into the chassis:

1.

n

oo

8.

9.

Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical
ground. The ESD strip must be secured to your wrist and to ground throughout the
procedure.

Remove the filler panel for the slot you want to mount the board into.

Unpack the board you want to install from its ESD bag.

Open handle by pushing grey levers. The fastening screw in the handle may have turned
during transportation and prevent the handle from opening completely. Please use a
screwdriver and turn screw clockwise if the handle does not open properly.

Install the top and bottom edge of the board into the guide rails of the chassis.

Slide the board into the slot until resistance is felt.

Use handle to insert board into slot. Simultaneously help slightly from the upper area of
the front panel close to the countersunk screw. Do not push the board in using any other
area of the front panel.

Make sure handle is in locked position (closed) and grey lever have clicked into the
locked position.

Secure the board using the screw in the handle and top of board.

10. Connect appropriate cables to the board.

Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-
EVRTG-300 or cPCI-EVR-300) into a Chassis

Use the following steps to install the module into the chassis:

1.

N

ONo O

9.

Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical
ground. The ESD strip must be secured to your wrist and to ground throughout the
procedure.

Remove the filler panel for the slot you want to mount the board into.

Unpack the board you want to install from its ESD bag.

Open handles by pushing grey levers. Fastening screws in the handles may have turned
during transportation and prevent the handles from opening completely. Please use a
screwdriver and turn screws clockwise if the handles do not open properly.

Install the top and bottom edge of the board into the guide rails of the chassis.

Slide the board into the slot until resistance is felt.

Use handles to insert board into slot. Do not push the board in using the front panel.
Make sure handles are in locked position (closed) and grey levers have clicked into the
locked position.

Secure the board using the screws in the handles

10. Connect appropriate cables to the board.

Installing the PMC-EVR-230 Board onto a Carrier

Use the following steps to install the module onto the PMC carrier:

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 8 of 77

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical
ground. The ESD strip must be secured to your wrist and to ground throughout the
procedure.

Remove the carrier board from its chassis and place on ESD safe working surface.
Remove any PMC filler panel from the PMC slot.

4. Note: the PMC-EVR-230 is a Universal voltage board and can be mounted in PMC slots
operating either on +3.3V or +5V PCI I/O voltage. Note however, that on the 1/O
connector Pn4 there are both +3.3V and +5V pins.

Unpack the PMC-EVR-230 from its ESD bag.

Carefully align PMC-EVR-230 front panel with the PMC carrier’s front panel hole.
Make sure PMC connectors are aligned and carefully push the board onto its carrier.
Secure the board from the bottom side of carrier using four M2.5 screws.

Connect appropriate cables to the board.

w

©oo~No G

Installing the PCle-EVR-300 Board into a Computer

Use the following steps to install the module into a computer:

1. Power down your computer

2. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical
ground. The ESD strip must be secured to your wrist and to ground throughout the
procedure.
Remove any panels to get access to the PCI Express slot.
Remove any PCle slot filler panel from the slot you want to install the EVR.
Unpack the PCle-EVR-300 from its ESD bag.
Carefully align the PCle-EVR-300 into the PCle slot. Make sure both the front panel and
PCle connector are aligned and carefully push the board into its slot.
Secure the board front panel with a screw.
8. Connect appropriate cables to the board.
9. Remount any chassis panels removed during the process.

SR

~

Replacing SFP (Small Form Factor Pluggable) Transceivers

SFP Transceivers are hot-pluggable and replaceable during operation. To replace a SFP
transceiver use the following steps:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical
ground. The ESD strip must be secured to your wrist and to ground throughout the
procedure.

Unplug any fibres connected to the transceiver you want to replace.
Pull out the transceiver using the transceiver handle that folds down.
Plug in a new transceiver.

Reconnect fibres.

agrwn

Document: EVR-MRM-007

Micro-Research Finland Oy Page: 8 of 77

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Introduction

Event Receivers decode timing events and signals from an optical event stream transmitted by an
Event Generator. Events and signals are received at predefined rate the event clock that is usually
divided down from an accelerators main RF reference. The event receivers lock to the phase
event clock of the Event Generator and are thus phase locked to the RF reference. Event
Receivers convert event codes transmitted by an Event Generator to hardware outputs. They can
also generate software interrupts and store the event codes with globally distributed timestamps
into FIFO memory to be read by a CPU.

Functional Description

After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit
distributed bus data and 8-bit event codes. The distributed bus may be configured to share its
bandwidth with time deterministic data transmission.

Event Decoding

The Event Receiver provides two mapping RAMs of 256 x 128 bits. Only one of the RAMs can
be active at a time, however both RAMs may be modified at any time. The event code is applied
to the address lines of the active mapping RAM. The 128-bit data programmed into a specific
memory location pointed to by the event code determines what actions will be taken.

Event code Offset Internal functions Pulse Triggers ‘Set’ Pulse ‘Reset’ Pulse
0x00 0x0000 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x01 0x0010 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x02 0x0020 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
OXFF OXOFFO 4bytes/32bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

There are 32 bits reserved for internal functions which are by default mapped to the event codes
shown in table . The remaining 96 bits control internal pulse generators. For each pulse generator
there is one bit to trigger the pulse generator, one bit to set the pulse generator output and one bit
to clear the pulse generator output.

Map bit Default event code Function

127 n/a Save event in FIFO

126 n/a Latch timestamp

125 n/a Led event

124 n/a Forward event from RX to TX
123 0x79 Stop event log

122 n/a Log event

102to 121 n/a (Reserved)

101 Ox7a Hearbeat

100 Ox7b Reset Prescalers

99 Ox7d Timestamp reset event
98 0x7c Timestamp clock event
97 0x71 Seconds shift register ‘1’
96 0x70 Seconds shift register ‘0’
80 to 95 (Reserved)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 10 of 77

79 Trigger pulse generator 15

64 ;I;r'igger pulse generator 0

48 t0 63 (Reserved)

47 Set pulse generator 15 output high
32 Set pulse generator 0 output high
16to 31 (Reserved)

15 Reset pulse generator 15 output low
0 Reset pulse generator 0 output low

Heartbeat Monitor

A heartbeat monitor is provided to receive heartbeat events. Event code $7A is by default set up
to reset the heartbeat counter. If no heartbeat event is received the counter times out (approx. 1.6
s) and a heartbeat flag is set. The Event Receiver may be programmed to generate a heartbeat
interrupt.

Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and
performed actions. The time stamping system consists of a 32-bit timestamp event counter and a
32-bit seconds counter. The timestamp event counter either counts received timestamp counter
clock events or runs freely with a clock derived from the event clock. The event counter is also
able to run on a clock provided on a distributed bus bit.

The event counter clock source is determined by the prescaler control register. The timestamp
event counter is cleared at the next event counter rising clock edge after receiving a timestamp
event counter reset event. The seconds counter is updated serially by loading zeros and ones (see
mapping register bits) into a shift register MSB first. The seconds register is updated from the
shift register at the same time the timestamp event counter is reset.

The timestamp event counter and seconds counter contents may be latched into a timestamp latch.
Latching is determined by the active event map RAM and may be enabled for any event code.

An event FIFO memory is implemented to store selected event codes with attached timing
information. The 80-bit wide FIFO can hold up to 511 events. The recorded event is stored along
with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the time of
reception. The event FIFO as well as the timestamp counter and latch are accessible by software.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 11 of 77

dbus_ena

;

distributed g | 1
prescgler=0
0

bus bit 4
TS eventcounterclk 5|
load bit'0' 4| event code $7C

event code $70
32-bit Seconds S hift Register

load bit '1' > —D 16-bi
event code $71 event clock re];itbn prescaler

v 32-bit Seconds Register 32-bit Timestamp E vent Counter
TS event counter reset sync load reset

event code $7D

32-bit Seconds Latch 32-bit Timestamp Latch
latch timestamp latch latch
MAP 14

event
; code

| Event FIFO I

| 32-bit Seconds 32-bit Timestamp event |

I 32-bit Seconds 32-bit Timestamp event |

: | | | |

Event FIFO write g, . g
MAP 15 | 32-bit Seconds 32-bit Timestamp event I

Figure 1: Event FIFO and Timestamping

Event Log

Up to 512 events with timestamping information can be stored in the event log. The log is
implemented as a ring buffer and is accessible as a memory region. Logging events can be
stopped by an event or software.

Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with the event clock rate
over the fibre optic transmission media. The distributed bus signals may be output on
programmable front panel outputs.

The distributed bus bandwidth may be shared by transmission of a configurable size data buffer
to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The
remaining bandwidth is reserved for transmitting data with a speed up to 50 Mbytes/s (event
clock rate divide by two).

Pulse Generators

The structure of the pulse generation logic is shown in Figure 2. Three signals from the mapping
RAM control the output of the pulse: trigger, ‘set’ pulse and ‘reset’ pulse. A trigger causes the
delay counter to start counting, when the end-of-count is reached the output pulse changes to the
‘set’ state and the width counter starts counting. At the end of the width count the output pulse is
cleared. The mapping RAM signal ‘set’ and ‘reset’ cause the output to change state immediately
without any delay.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 12 of 77

Map RAM

trigger x
event clk

reset trigger
Prescaler

S Delay Counter
(optional) enable out countenable 'sMe?ppilégAx POLx

L L]

trigger

P ulse Output
to mapping logic

W idth Counter
ountenable

Master enable
SW enable

Map RAM
'reset’ pulse x

Figure 2: Pulse Output Structure

32 bit registers are reserved for both counters and the prescaler, however, the prescaler is not
necessarily implemented for all channels and may be hard coded to 1 in case the prescaler is
omitted. Software may write OXFFFFFFFF to these registers and read out the actual width or
hard-coded value of the register. For example if the width counter is limited to 16 bits a read will
return OXOO0OOFFFF after a write of OXFFFFFFFF.

Prescalers

The Event Receiver provides a number of programmable prescalers. The frequencies are
programmable and are derived from the event clock. A special event code reset prescalers $7B
causes the prescalers to be synchronously reset, so the frequency outputs will be in same phase
across all event receivers.

Programmable Front Panel, Universal I/O and Backplane Connections

All outputs are programmable: each pulse generator output, prescaler and distributed bus bit can
be mapped to any output. The mapping is shown in table below.

Table 1: Signal mapping IDs

Mapping ID Signal

O0ton-1 Pulse generator output (number n of pulse generators depends on HW and
firmware version)

nto 31 (Reserved)

32 Distributed bus bit 0 (DBUSO)

39 Distributed bus bit 7 (DBUS7)

40 Prescaler 0

41 Prescaler 1

42 Prescaler 2

4310 58 (Reserved)

59 Event clock output (only on PXle-EVR-300)

60 Event clock output with 180° phase shift (only on PXle-EVR-300)

61 Tri-state output (for PCle-EVR-300/PXle-EVR-300 with input module

populated in Interface Module’s Universal I/O slot, and PXle-EVR-300
bidirectional PXI1 trigger signals)
62 Force output high (logic 1)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 13 of 77

63 Force output low (logic 0)

Front Panel TTL Outputs (VME-EVR-230 and VME-EVR-230RF)

The VME-EVR-230 provides eight programmable TTL outputs in the front panel TTLOto TTL7
whereas the number of TTL level outputs in the VME-EVR-230RF is limited to four (TTLO to
TTL3). These outputs are capable of driving a TTL level signal into a 50 ohm ground terminated
coaxial cable. The source for these signals are determined by mapping registers which allow
selecting different types of pulse outputs, prescalers and distributed bus signals.

Front Panel Universal 1/0O Slots

Universal /O slots provide different types of output with exchangeable Universal I/0 modules.
Each module provides two outputs e.g. two TTL output, two NIM output or two optical outputs.
The source for these outputs is selected with mapping registers.

Two front panel Universal I/O slots have extra I/O pins to allow controlling the delay of UNIV-
LVPECL-DLY modules. For the cPCI-EVR-300 the two slots that allow UNIV-LVPECL-DLY
modules are UNIV8/9 and UNIV10/11.

An optional side-by-side front panel module for the cPCI-EVR-220 and cPCI-EVR-230 offers
three additional Universal 1/0 slots with a maximum of six outputs. The cPCI-EVVR-300 has six
Universal 1/O slots.

Front Panel CML Outputs (VME-EVR-230RF only)

Front Panel CML Outputs provide low jitter differential signals with special outputs. The outputs
can work in different configurations: pulse mode, pattern mode and frequency mode.

CML Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping
registers, however, the output logic monitors the state of this signal and distinguishes between
state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 20 bit
pattern is sent out with a bit rate of 20 times the event clock rate.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 14 of 77

Pulse Output D
Mepping Multiplexer
=N} .

Event Clock

Pattem Register for state ‘low (00)

|19|18|17|16|15|14|13|12|11|10|9|E|7|6| | | |

5 4 3

|1|O| rOO

2

Pattem Register for state 'rising edge (01)

| —a

|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|

4

3 2 1 0

Pattem Register for state 'falling edge (10)

[Toolo ool ol Loe [Lo Lo [[[1=]

Pattem Register for state 'high (11)

|19|18|17|16|15|14|13|12|11|10|9|E|7|6|

— ~

ShiftRegister Operating at20 x EventClock Rate

—)

EEEEEEEEEEEEEEEERREN

|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|

CML differential

—{ output LEMOEPY
Figure 3: Block Diagram of Programmable CML Outputs

¢ When the source for a CML output is low and was low one event clock cycle earlier
(state low), the CML output repeats the 20 bit pattern stored in pattern_00 register.

e When the source for a CML output is high and was low one event clock cycle earlier
(state rising), the CML output sends out the 20 bit pattern stored in pattern_01 register.

o When the source for a CML output is high and was high one event clock cycle earlier
(state high), the CML output repeats the 20 bit pattern stored in pattern_11 register.

o When the source for a CML output is low and was high one event clock cycle earlier
(state falling), the CML output sends out the 20 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single CML output bit is 400 ps. These
outputs allow for producing fine grained adjustable output pulses and clock frequencies.

CML Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of
1/20" part of the event clock cycle i.e. 400 ps step with an event clock of 125 MHz. There are
some limitations, however:

e Clock high time and clock low time must be > 20/20™ event clock period steps
e Clock high time and clock low time must be < 65536/20" event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.
When a rising edge of the mapped output signal is detected the frequency generator takes its

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 15of 77

output value from the trigger level bit and the counter value from the trigger position register.
Thus one can adjust the phase of the synchronized clock in 1/20" steps of the event clock period.

Usage example: Australian synchrotron booster clock. We have following:

Event clock of 499.654 MHz/4

Storage ring 360 RF buckets

Booster 217 RF buckets

Booster and storage ring coincidence clock on DBUS7

The CML outputs are running at a rate of 20 times the event clock or 499.654 MHz * 5, thus the
booster revolution period is 217 * 5 CML bit periods. In CML frequency mode we can now set
the output period (pulse high time + pulse low time) to 217 * 5 = 1085 bits. For approximately
50% duty cycle we set the pulse high time to 542 (0x21e) and the pulse low time to 543 (0x21f).

The actual register settings required are:

Write 0x00000011 to CML Control register (CMLXENA)
Write 0x021e to CML High Period Count register (CMLXHP)
Write 0x021f to CML Low Period Count register (CMLXLP)

We also need to set the trigger from DBUS?7 by setting up register FPOutMapx.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by
bit CMLTL in the CML Control register and the trigger position also in the CML Control
register.

CML Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

e The pattern length is a multiple of 20 bits, where each bit is 1/20" of the event clock
period

e Maximum length of the arbitrary pattern is 20 x 2048 bits

e A pattern can be triggered from any pulse generator, distributed bus bit etc. When
triggered the pattern generator starts sending 20 bit words from the pattern memory
sequentially starting from position 0. This goes on until the pattern length set by the
samples register has been reached.

o If the pattern generator is in recycle mode the pattern continues immediately from
position 0 of the pattern memory.

o If the pattern generator is in single pattern mode, the pattern stops and the 20 bit word
from the last position of the pattern memory (2047) is sent out until the pattern generator
is triggered again.

cPCI-EVRTG-300 GTX Front Panel Outputs

All eight cPCI-EVRTG-300 front panel output are similar to the CML outputs on the VME-EVR-
230RF. The GTX Outputs provide low jitter differential signals with special outputs. The outputs
can work in different configurations: pulse mode, pattern mode and frequency mode. The
difference compared to the CML output of the VME-EVR-230RF is that instead of 20 bits per

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 16 of 77

event clock cycle the GTX outputs have 40 bits per event clock cycle doubling the resolution to
200 ps/bit at an event clock of 125 MHz.

In addition to the higher bit rate each of the GTX outputs has a programmable delay line between
the FPGA and the actual output which allows a delay range of 1024 steps of ~9 ps. The delay
value is set with registers GTXO0DIy to GTX7Dly.

GTX Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping
registers, however, the output logic monitors the state of this signal and distinguishes between
state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 40 bit
pattern is sent out with a bit rate of 40 times the event clock rate.

P ulse Output
Mapping Multiplexer

Event Clock

P attemn Register for state 'low (00)'

|39|zs|37|36|35|34|33|32|————| | | [« | | |1|o| I—

P attern Register for state 'rising edge (01)'
[aofse [oraefos [oefaafse[=—=—=—]+ [[s [a[a [[s o] I—
HEEEEEE HEEEEEE

P attern Register for state 'falling edge (10)'

IaeIzsleselasluleslazl————l | | B | | | | | B

°
2

o

P attern Register for state 'high (11)

IseIesleselssluleslul————l | | B | | | | | M

Shift Register Operating at 40 x Event Clock Rate

I

Lelelelals]a][a]e][==——T-Te[s]s]a]-]:]0]

GTX output: UNIV /O,

—= LVPECL, optical SFP

Figure 4: Block Diagram of Programmable GTX Outputs

e When the source for a GTX output is low and was low one event clock cycle earlier (state
low), the GTX output repeats the 40 bit pattern stored in pattern_00 register.

o When the source for a GTX output is high and was low one event clock cycle earlier
(state rising), the GTX output sends out the 40 bit pattern stored in pattern_01 register.

¢ When the source for a GTX output is high and was high one event clock cycle earlier
(state high), the GTX output repeats the 40 bit pattern stored in pattern_11 register.

e \When the source for a GTX output is low and was high one event clock cycle earlier
(state falling), the GTX output sends out the 40 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single GTX output bit is 200 ps. These
outputs allow for producing fine grained adjustable output pulses and clock frequencies.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 17 of 77

GTX Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of
1/40" part of the event clock cycle i.e. 200 ps step with an event clock of 125 MHz. There are
some limitations, however:

e Clock high time and clock low time must be > 40/40" event clock period steps
e Clock high time and clock low time must be < 65536/40™ event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.
When a rising edge of the mapped output signal is detected the frequency generator takes its
output value from the trigger level bit and the counter value from the trigger position register.
Thus one can adjust the phase of the synchronized clock in 1/40" steps of the event clock period.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by
bit CMLTL in the CML Control register and the trigger position also in the CML Control
register.

GTX Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

e The pattern length is a multiple of 40 bits, where each bit is 1/40™ of the event clock
period

e Maximum length of the arbitrary pattern is 40 x 2048 bits

e A pattern can be triggered from any pulse generator, distributed bus bit etc. When
triggered the pattern generator starts sending 40 bit words from the pattern memory
sequentially starting from position 0. This goes on until the pattern length set by the
samples register has been reached.

e If the pattern generator is in recycle mode the pattern continues immediately from
position 0 of the pattern memory.

o If the pattern generator is in single pattern mode, the pattern stops and the 40 bit word
from the last position of the pattern memory (2047) is sent out until the pattern generator
is triggered again.

GTX GUN-TX-203 Mode

The cPCI-EVRTG-300 has two SFP outputs CH1 (GTX6) and CH2 (GTX7) that can generate a
modulated signal that can be received by the Electron Gun trigger receiver GUN-RC-203. The
GUN-TX-203 Mode has been designed to operate with a RF bucket clock of 499.654 MHz and
event clock of ¥ of the RF clock.

To enable the GUN-TX-203 Mode one has to set bits GTX2MD and CMLENA in the CML/GTX
Control register for the given GTX output. The pulse output delay can be changed in quarters of
the event clock period by the GTXPHZ1:0 bits. For finer delay tuning the GTX delay lines may be
adjusted (registers GTX6DIy for CH1 and GTX7Dly for CH2).

The two SFP outputs share an external inhibit signal that only allows triggers when the external
inhibit signal is in a given state. To use the external inhibit function a UNIV-TTLIN-IL module
has to be mounted in Universal 1/0O slot UNIVO/1. To allow output pulses the inhibit signal at

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 18 of 77

UNIVO0 has to be pulled low. In case of an open circuit output pulses are inhibited. It is possible
to override the inhibit input with a control register bit.

The GUN-TX-203 mode can be used in conjunction with the GTX pulse mode.

Pulse Mode Example

This example shows how to configure CH1 & CH2 using GUN-RC-203 to output a pulse on a
received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the

following conditions:

o Event clock rate is set to 124.9135 MHz
o EVG is periodically sending out event code 0x01
o Register contents of EVR are power up default values

m 7a000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200 Enable mapping RAM 1

m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag

m 7a000202 0003 Enable pulse generator 0, enable event trigger

m 7a00020e 0064 Set pulse generator 0 width to 100 cycles

m 7a000212 0003 Enable pulse generator 1, enable event trigger

m 7a00021a 0064 Set pulse delay to 100 cycles

m 7a00021le 0064 Set pulse generator 1 width to 100 cycles

m 7a000408 0000 Map pulse generator 0 output to LVPECL 0

m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1

m 7a00040c 0000 Map pulse generator 0 output to CH1

m 7a00040e 0001 Map pulse generator 1 output to CH2

m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1

m 7a000692 1 Enable pulse mode for GTX4 / LVPECL 0

m 7a0006b2 1 Enable pulse mode for GTX5/LVPECL 1

m 7a0006d2 0401 Enable pulse mode & GUN-TX-203 mode for GTX6 / CH1
m 7a0006£2 0401 Enable pulse mode & GUN-TX-203 mode for GTX7 / CH2

GTX GUN-RC-300 Mode

The two front panel SFP outputs CH1 (GTX6) and CH2 (GTX7) can be configured to generate a
modulated signal that can be received by an Electron Gun trigger receiver GUN-RC-300. The
difference between the GUN-RC-203 and GUN-RC-300 is that the latter is capable of generating
pulse trains with 2 ns resolution that is it allows triggering the gun bunch by bunch.

Pulse Mode Example

This example shows how to configure CH1 an d CH2 to output a pulse on a received event. We
use the telnet interface to the cPCI-EVRTG-300. This example assumes the following conditions:

o Event clock rate is set to 124.9135 MHz
e EVG is periodically sending out event code 0x01

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 19 of 77

o Register contents of EVR are power up default values

m 72000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override

m 7a000006 0200 Enable mapping RAM 1

m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag

m 7a000202 0003 Enable pulse generator 0, enable event trigger

m 7a00020e 0064 Set pulse generator 0 width to 100 cycles

m 7a000212 0003 Enable pulse generator 1, enable event trigger

m 7a00021la 0064 Set pulse delay to 100 cycles

m 7a00021le 0064 Set pulse generator 1 width to 100 cycles

m 72000408 0000 Map pulse generator 0 output to LVPECL 0 (for reference only)
m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1 (for reference only)
m 7a00040c 0000 Map pulse generator 0 output to CH1

m 7a00040e 0001 Map pulse generator 1 output to CH2

m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1

m 7a000692 1 Enable pulse mode for GTX4 /LVPECL 0

m 7a0006b2 1 Enable pulse mode for GTX5/LVPECL 1

m 7a0006d2 0801 Enable pulse mode & GUN-TX-300 mode for GTX6 / CH1

m 7a0006£2 0801 Enable pulse mode & GUN-TX-300 mode for GTX7 / CH2

Pattern Mode Example

This example shows how to configure CH1 and CH2 to output an arbitrary pulse pattern on a
received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the
following conditions:

e Event clock rate is set to 124.9135 MHz
e EVG is periodically sending out event code 0x01
e Register contents of EVR are power up default values

m 7a000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override

m 7a000006 0200 Enable mapping RAM 1

m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag

m 7a000202 0003 Enable pulse generator 0, enable event trigger

m 7a00020e 0064 Set pulse generator 0 width to 100 cycles

m 7a000212 0003 Enable pulse generator 1, enable event trigger

m 7a00021la 0064 Set pulse delay to 100 cycles

m 7a00021le 0064 Set pulse generator 1 width to 100 cycles

m 72000408 0000 Map pulse generator 0 output to LVPECL 0 (for reference only)
m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1 (for reference only)
m 7a00040c 0000 Map pulse generator 0 output to CH1

m 7a00040e 0001 Map pulse generator 1 output to CH2

m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1

m 7a000692 1 Enable pulse mode for GTX4 / LVPECL 0

m 7a0006b2 1 Enable pulse mode for GTX5/LVPECL 1

m 7a0006da 0100 Set pattern length to 256 event clock cycles

m 7a0006d2 0821 Enable pattern mode & GUN-TX-300 mode for GTX6/CH1

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 20 of 77
m 7a0006fa 0100 Set pattern length to 256 event clock cycles
m 7a0006£f2 0821 Enable pattern mode & GUN-TX-300 mode for GTX7 / CH2

The pattern is stored in the GTX pattern memory GTX6MEM for CH1 and GTX7MEM for CH2.
The pattern memory has a resolution of 40 bits per event clock cycle, however, the GUN-RC-300
is only capable of reproducing pulses at rate of four 1 ns pulses every event clock cycle. The 40
bits of the pattern memory can be considered as four 10 bit blocks and each of these blocks may
contain the following bit combinations only:

e (0000000000
e 1111100000
e 1111111111

Note that the pattern memory contains pre-programmed patterns for the GUN-TX-203 mode so
the memory is not all-zero after power-up. Also if the pattern memory is modified the GUN-TX-
203 mode could stop working.

Common GUN-TX Mode Considerations

o The GTX outputs should not be enable before the EVG/EVR link is up

e Disconnecting any fibre connection between EVG/EVR or EVR/GUN-RC can lead to a
spurious pulses at the GUN-RC

o Alost EVG RF reference can cause spurious pulses at the GUN-RC

o When the Fine Delay value of a GUN-TX channels is changed the output is first forced
low to prevent spurious triggers from glitches in the delay chip

Configurable Size Data Buffer

Some applications require deterministic data transmission. The configurable size data buffer
provides a configurable size buffer that may be transmitted over the event system link. The buffer
size is configured in the Event Generator to up to 2 kbytes. The Event Receiver is able to receive
buffers of any size from 4 bytes to 2 kbytes in four byte (long word) increments.

Data reception is enabled by changing the distributed bus mode for data transmission (mode = 1
in Data Buffer Control Register). This halves the distributed bus update rate. Before a data buffer
can be received the data buffer receiver has to be enabled (write enable = 1 in control register).
This clears the checksum error flag and sets the rx_enable flag. When a data buffer has been
received the rx_enable flag is cleared and rx_complete flag is set. If the received and computed
checksums do not match the checksum error flag is set.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 21 of 77

reception 2kbyte
distributed I engine and < > dual ported - [TEITOTY
bus interface checksum data transmit access

comparison buffer

L A A

enable

disable
bufsize_words
rx_enable
rx_complete
checksum error

vy

Figure 5: Data Receive Buffer

The size of the data buffer transfer can be read from the control register. An interrupt may be
generated after reception of a data buffer.

Interrupt Generation

The Event Receiver has multiple interrupt sources which all have their own enable and flag bits.
The following events may be programmed to generate an interrupt:

e Receiver link state change
Receiver violation: bit error or the loss of signal.
Lost heartbeat: heartbeat monitor timeout.
Write operation of an event to the event FIFO.
Event FIFO is full.

o Data Buffer reception complete.
In addition to the events listed above an interrupt can be generated from one of the pulse
generator outputs, distributed bus bits or prescalers. The pulse interrupt can be mapped in a
similar way as the front panel outputs.

External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal
event. This event will be handled as any other received event.

Programmable Reference Clock

The event receiver requires a reference clock to be able to synchronise on the incoming event
stream sent by the event generator. For flexibility a programmable reference clock is provided to
allow the use of the equipment in various applications with varying frequency requirements.

Document: EVR-MRM-007

Micro-Research Finland Oy Page: 22 of 77

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Fractional Synthesiser

The clock reference for the event receiver is generated on-board the event receiver using a
fractional synthesiser. A Micrel (http://www.micrel.com) SY87739L Protocol Transparent
Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists
programming bit patterns for a few frequencies.

Event Rate Configuration Bit Reference Output Precision
Pattern (theoretical)

499.8 MHz/5 0x025B41ED 99.956 MHz -40 ppm

=99.96 MHz

50 MHz 0x009743AD 50.0 MHz 0

499.8 MHz/10 0x025B43AD 49.978 MHz -40 ppm

=49.98 MHz

The event receiver reference clock is required to be in £100 ppm range of the event generator

event clock.

Hardware Configuration Summary

cPCI- PMC- VME- VME- cPCI-
EVR-230 | EVR-230 | EVR-230 EVR- EVRTG-
230RF 300
Pulse 10 10 16 16 10
Generators
FPTTL 2 1 2 2 0
inputs
FPTTL 0 3 8 4 0
outputs
FP CML 0 0 0 3 8!
outputs
FP UNIV 4172 0/0 472 4/2 472
1/0 / slots
UNIV GPIO | 8/2 0/0 8/2 8/2 8/2
pins / slots
TB Outputs 0 10 16 16 0
TB Inputs 0 0 16 16 0
Prescalers 3x32bit | 3x16bit | 3x32bit | 3x16bit | 3 x 32 hit
0 16,32,32 | 16,32,32 | 16,32,24 | 8,32,16 16, 32, 32
% 1 16,32,32 | 16,32,32 | 16,32,24 | 8,32,16 16, 32, 32
> 2 16, 32,32 | 8,32,16 16, 32,24 | 8,32,16 16, 32, 32
g 3 16,32,32 | 8,32,16 16,32,24 | 8,32,16 16, 32, 32
- 4 0,32,16 0,32,16 0,32,24 0,32,16 0,32,16
% @|5 0, 32,16 0, 32,16 0, 32,24 0, 32,16 0, 32,16
§ S(6 0, 32,16 0, 32,16 0, 32,24 0, 32,16 0, 32,16
a ‘é’a 7 0,32,16 0, 32,16 0,32,24 0, 32,16 0, 32,16
sg|8 0, 32,16 0, 32,16 0,32,24 0, 32,16 0, 32,16
Scl9 0,32,16 0,32,16 0,32,24 0,32,16 0,32,16
$=2]10 n/a n/a 0,32,24 [0,32,16 | n/a
O2I1 [na n/a 0,32,24 |0,32,16 |nAa
=212 n/a n/a 0,32,24 [0,32,16 | n/a
o0 113 n/a n/a 0,32,24]0,32,16 | n/a

! From the software point of view all outputs show up as GTX/CML outputs. Physically there are four
UNIV Outputs (two slots), two LVPECL outputs and two SFP outputs

http://www.micrel.com/

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 23 of 77

14 n/a n/a 0, 32,24 0, 32,16 n/a
15 n/a n/a 0, 32,24 0, 32,16 n/a
cPCI- cRIO- PCle-EVR- | PXle-EVR- | PXle-EVR-
EVR-330 | EVR-300 | 300 3001 300U

Pulse 14 8 16 16 16
Generators
FPTTL 2 0 0 2 2
inputs
FPTTL 0 0 0 0 0
outputs
FP CML 0 0 0 0 0
outputs
FP UNIV 12/ 6 4270 16/8% 16 /8* 4/2
1/0 / slots
UNIV GPIO |8/2 0/0 0/0 0/0 8/2
pins / slots
TB Outputs 0 0 0 58 58
TB Inputs 0 0 0 42 42
Prescalers 3x32bit | 3x16bit | 3x 16 bit 4 x 32 bit 4 x 32 hit
° 0 16, 32,32 | 16,32,32 | 16, 32,32 16, 32, 32 16, 32, 32
2 1 16,32,32 | 16,32,32 | 16,32, 32 16, 32, 32 16, 32, 32
o 2 16,32,32 | 16,32,32 | 16,32, 32 16, 32, 32 16, 32, 32
g 3 16,32,32 | 16,32,32 | 16,32,32 16, 32, 32 16, 32, 32
> 4 0, 32,16 0, 32,16 0, 32,16 0, 32,16 0, 32,16
g 5 0, 32,16 0, 32,16 0, 32,16 0, 32,16 0, 32,16
- 6 0, 32,16 0, 32,16 0, 32,16 0, 32,16 0, 32,16
= 7 0, 32,16 0, 32,16 0, 32,16 0, 32,16 0, 32,16
§ 8 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
a =9 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
s<]10 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
g "éa 11 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
5 S12 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
(;2 s [13 0, 32,16 n/a 0, 32,16 0, 32,16 0, 32,16
Z2|14 n/a n/a 0, 32,16 0, 32,16 0, 32,16
a3 15 n/a n/a 0, 32,16 0, 32,16 0, 32,16

Connections

cPCI-EVR-2x0 Front Panel Connections

The front panel of the Event Receiver and its optional side-by-side module is shown in Figure 6
and Figure 7.

2 From the software point of view the cRIO outputs show up as UNIV outputs. Physically they are available
on the DSUB connector.

3 Universal 1/O is available on the external 1/0 box

4 Universal /0 is available on the external 1/0 box, which from the software point of view are ports 4 to 19
(ports 0 to 3 are physically present on the PCB however, unavailable for mounting a Universal 1/0 module)

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 24 of 77

e - 4 I8
O s g cofofof —
O 2 & -

3 T O
] tof :

S 2

= UNIVO UNIV1 UNIV2 UNIV3 TTL TX RX

Figure 6: Event Receiver Front Panel

< o

&) N

& o

(]

o & 3 5
INICk

o 4

2 X

= o UNIV4 UNIVS UNIV6 UNIV7 UNIV8 UNIV9

Figure 7: Optional Side-by-side Module Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led
LNK

EVT

X

RX

TTL INO
TTL IN1
UNIVO0/1
UNIV2/3
UNIV4/5
UNIV6/7
UNIV8/9

Style
Red/Green
Led

Red/Green
Led

LC

LC
LEMO-EPY
LEMO-EPY
Universal slot
Universal slot
Universal slot
Universal slot
Universal slot

Level

optical
optical
TTL
TTL

Description

Red: receiver violation detected
Green: RX link OK, violation flag
cleared

Green: link OK, flashes when event
code received

Red: Flashes on led event
Transmit Optical Output (TX)
Receiver Optical Input (RX)
External Event Input

External Event Input

Universal Output 0/1

Universal Output 2/3

Universal Output 4/6

Universal Output 6/7

Universal Output 8/9

VME-EVR-230 and VME-EVR-230RF Front Panel Connections

The front panel of the VME-EVR-230 Event Receiver is shown in Figure 6 and VME-EVR-
230RF in Figure 9: VME-EVR-230RF Event Receiver Front PanelFigure 9 respectively.

10baseT

10/100

N

-
bl
=
te]
)
=
=

=
= (e}

TX _Rx_TIL TTL TTL TTL TTL

N
_/

0oUT6 OUT7

UT2 Ol

OUT4_0UTS

ENEKJ
NN/

‘ ‘f

Micro
Research

UNIVO _UNIVL UNIV2 _UNIV3 coM

.

Figure 8: VME-EVR-230 Event Receiver Front Panel

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 250f 77

RX EVENT RX 0N NN O\ N N N N
FAIL LNK N FAIL RUN = 3 3 3 3 8
00000 o | p p P
O gff EM OUT ERR ACT g S S E ﬁ S O
£ 5 5
OO0 0 N AL
VME-EVR-230RF 10baseT 10/100 TX RX TIL TTL TTL CML CML CML UNIVO UNIVL UNIV2 UNIV3 COM

Figure 9: VME-EVR-230RF Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description
FAIL Red Led Module Failure/Interlock active
OFF Blue Led Module not Configured/Powered
Down
RX LINK Green Led Receiver Link Signal OK
ENA Green Led Event Receiver Enabled
EVENT IN Yellow Led Incoming Event (RX)
EVENT OUT Yellow Led Active HW output
RX FAIL Red Led Receiver Violation
ERR Red Led SY87739L reference not locked
RUN Green Led Ubicom IP2022 software running
ACT Yellow Led Ubicom 1P2022 telnet connection
active
10baseT with LEDs RJ45 10baseT 10baseT Ethernet Connection
green Led link established
amber Led link activity
10/100 RJ45 (reserved)
TX LC optical Transmit Optical Output (TX)
RX LC optical Receiver Optical Input (RX)
TTL INO LEMO-EPY TTL External Event Input
TTL IN1 LEMO-EPY TTL External Event Input
TTL OUTO LEMO-EPY TTL Programmable TTL Output 0
TTLOUT1 LEMO-EPY TTL Programmable TTL Output 1
TTL OUT2 LEMO-EPY TTL Programmable TTL Output 2
TTL OUT3 LEMO-EPY TTL Programmable TTL Output 3
TTL OUT4 LEMO-EPY TTL Programmable TTL Output 4°
TTL OUT5 LEMO-EPY TTL Programmable TTL Output 5
TTL OUT6 LEMO-EPY TTL Programmable TTL Output 6
TTL OUT7 LEMO-EPY TTL Programmable TTL Output 7
CML OUT4 LEMO-EPY CML Programmable CML Output 4°
CML OUT5 LEMO-EPY CML Programmable CML Output 5
CML OUT6 LEMO-EPY CML Programmable CML Output 6
UNIVO0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
COM RJ45 RS232 (reserved)

VME P2 User I/O Pin Configuration
The following table lists the connections to the VME P2 User 1/O Pins.

STTL outputs TTL4-TTL7 available on VME-EVR-230 only
& CML outputs available on VME-EVR-230RF only

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 26 of 77

Pin Signal

Al Transition board 1DO0

A2 Transition board 1D1

A3-Al10 Ground

All Transition board 1D2

Al2 Transition board 1D3
Al13-Al5 Ground

Al6 Transition board handle switch

Al17-A26 Ground
A27-A31 +5V

A32 Power control for transition board

C1 (reserved)

C2 (reserved)

C3 (reserved)

C4 (reserved)

C5 (reserved)

C6 (reserved)

C7 (reserved)

C8 (reserved)

C9 (reserved)

C10 (reserved)

C11 (reserved)

C12 Programmable transition board output O
C13 Programmable transition board output 1
Cl4 Programmable transition board output 2
C15 Programmable transition board output 3
C16 Programmable transition board output 4
C17 Programmable transition board output 5
C18 Programmable transition board output 6
C19 Programmable transition board output 7
C20 Programmable transition board output 8
Cc21 Programmable transition board output 9
C22 Programmable transition board output 10
Cc23 Programmable transition board output 11
C24 Programmable transition board output 12
C25 Programmable transition board output 13
C26 Programmable transition board output 14
Cc27 Programmable transition board output 15
C28 (reserved)

C29 (reserved)

C30 (reserved)

C31 (reserved)

C32 (reserved)

Document: EVR-MRM-007

Micro-Research Finland Oy Page: 27 of 77

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

PMC-EVR-230 Front Panel Connections
The front panel of the PMC Event Receiver is shown in Figure 10.
OOy

fOOO0[gt

Figure 10: PMC-EVR-230 Event Receiver Front Panel

T

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

LINK Green Led Receiver Link Signal OK
EVT Yellow Led Incoming Event (RX)

ouT Yellow Led Active HW output

FAIL Red Led Receiver Violation

TX (SFP) next to leds LC Optical 850 nm Event link Transmit

RX (SFP) nextto EXT.IN LC Optical 850 nm Event link Receiver

ouTo LEMO-EPL TTL Programmable TTL Output 0
OuUT1 LEMO-EPL TTL Programmable TTL Output 1
ouT2 LEMO-EPL TTL Programmable TTL Output 2
EXT IN LEMO-EPL TTL External Event Input

PMC-EVR-230 Pn4 User I/O Pin Configuration

The following table lists the connections to the PMC Pn4 User 1/0 Pins and to VME P2 pins
when the module is mounted on a host with “P4V2-64ac” mapping complying VITA-35 PMC-P4
to VME-P2-Rows-A,C.

PMC Pn4 pin | VME P2 Pin (Signal
2 Al Transition board IDO
4 A2 Transition board ID1
6,8, ...,20 A3-A10 |Ground
22 All Transition board ID2
24 Al2 Transition board ID3
26, 28, 30 Al13-Al15 |(Ground
32 Al6 Transition board handle switch
34,36, ...,52 Al17-A26 |Ground
54,56, ...,62 A27-A31 [|+5V
64 A32 Power control for transition board
1 C1 (reserved)
3 C2 (reserved)
5 C3 (reserved)
7 C4 (reserved)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 28 of 77

9 C5 (reserved)

11 C6 (reserved)

13 C7 (reserved)

15 C8 (reserved)

17 C9 (reserved)

19 C10 (reserved)

21 Cl1 (reserved)

23 C12 Programmable transition board output O
25 C13 Programmable transition board output 1
27 Cl14 Programmable transition board output 2
29 C15 Programmable transition board output 3
31 C16 Programmable transition board output 4
33 C17 Programmable transition board output 5
35 C18 Programmable transition board output 6
37 C19 Programmable transition board output 7
39 C20 Programmable transition board output 8
41 Cc21 Programmable transition board output 9
43 C22 Programmable transition board output 10
45 C23 Programmable transition board output 11
47 C24 Programmable transition board output 12
49 C25 Programmable transition board output 13
51 C26 Programmable transition board output 14
53 c27 Programmable transition board output 15
55 Cc28 (reserved)

57 C29 (reserved)

59 C30 (reserved)

61 C31 (reserved)

63 C32 (reserved)

cRIO-EVR-300 Front Panel Connections

POWER

TX RX ETH v+ GND

Figure 11: cRIO-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description

TX (SFP) LC Optical 850 nm Event link Transmit

RX (SFP) LC Optical 850 nm Event link Receiver

ETH RJ45 10baseT/100baseTX Ethernet port

V+ Terminal +6 to +30 VDC Power supply positive
supply

GND Terminal Ground Power supply ground

Document: EVR-MRM-007

Micro-Research Finland Oy Page: 29 of 77

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

cPCI-EVRTG-300 Front Panel Connections

j § e T; . .. , ALVPE::; Cf\iﬁé@f ™0 Om O Ore m0O O EC‘ZE‘CEIG |:
Lo g o | ‘ | J O | o ¢
\ S 10baseT 10/100/GEE AT com RX UNNO UNIVA UNIVZ UNIV3. 0 T cH1 CH2 LINK

Figure 12: cPCI-EVRTG-300 Event Receiver Front Panel
Connector / Led Style Level Description
10baseT with LEDs RJ45 10baseT 10baseT Ethernet Connection

green Led link established
amber Led link activity

10/100/GbE RJ45 (reserved)
LNK led 10/100/GbE link led
ACT led 10/100/GbE active led
COM RJ45 RS-232 (reserved)
TX Led (reserved)
RX Led (reserved)
UNIV0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
LVPECL O EPG.00.302 3.3V diff. LVPECL LVPECL Output
LVPECL 1 EPG.00.302 3.3V diff. LVPECL LVPECL Output
A RGB Led (reserved)
B RGB Led (reserved)
C RGB Led (reserved)
D RGB Led (reserved)
CH1 LC Optical 850 nm GunTX Output
CH?2 LC Optical 850 nm GunTX OQutput
Link TX (SFP) LC Optical 850 nm Event link Transmit
Link RX (SFP) LC Optical 850 nm Event link Receiver

cPCI-EVR-300 Front Panel Connections

\J—_l p N \ \ - - N BRI "\ 1m0 Om I:‘
e | | } | 2 °
L =
\)L) L)L J L) _/
5 UNIVD UMNIV1 UNIVZ2 UNIV3 UNIV4 UNIVSE UNIVE UNINT UNIVB UNIVS UNIVID UNIVI1 uUsB 104100 TTL LINK

Figure 13: cPCI-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description

UNIVO0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
UNIV4/5 Universal slot Universal Output 4/5
UNIV6/7 Universal slot Universal Output 6/7
UNIV8/9 Universal slot Universal Output 8/9
UNIV10/11 Universal slot Universal Output 10/11
USB USB (USB Serial Port, reserved)
10/100 RJ45 (10/100 Ethernet, reserved)
INO Lemo TTL TTL Input INO

IN1 Lemo TTL TTL Input IN1

Link TX (SFP) LC Optical 850 nm Event link Transmit

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 30 of 77

Link RX (SFP) LC Optical 850 nm Event link Receiver

PCle-EVR-300 and IFB-300 Connections

Due to its small bracket the PCle-EVR-300 has only a SFP transceiver and a micro-SCSI type
connector to interface to the IFB-300. The cable between the PCle-EVVR-300 and IFB-300 should
be connected/disconnected only when powered down.

Connector / Led Style Level Description

Link TX (SFP) LC Optical 850 nm Event link Transmit
Green: TX enable
Red: Fract.syn. not locked
Blue: Event out

Link RX (SFP) LC Optical 850 nm Event link Receiver

Next to micro-SCSI Green: link up
Red: link violation detected
Blue: event led

The interface board IFB-300 has eight Universal 1/O slots which can be populated with various
types of Universal I/0 modules. If an input module is populated in any slot a jumper has to be
mounted in that slot’s two pin header with marking “Insert jumper for input module”. Please note
that if an input module is mounted the corresponding Universal Output Mapping has to be tri-
stated. Refer to Table 1: Signal mapping IDs for details.

Universal Slot 0/1 signals are hard-wired to the TTLIN 0/1 signals.

e N N ~ N e N r B
. LINK D) A N
+ EVING @] F
i /(:\\. EVOUT() o
1 (O)rerad r
- e \ \ VAN J IS \ / p .

. A AN v J S
5 IFB-300 UNIVD UNIVY UNIV2Z UNIV3 UNIV4 UNIVSE UNIVE UNIVT UNIVB UNIVE UNIVIO UNIVIT UNIVI2 UNIVI3 UNIVi4 UNIV1S

Figure 14: IFB-300 Event Receiver Interface Board Front Panel

Connector / Led Style Level Description

UNIVO0/1 Universal slot TTL Input / Universal 1/0 0/1
UNIV2/3 Universal slot Universal 1/0 2/3
UNIV4/5 Universal slot Universal 1/0 4/5
UNIV6/7 Universal slot Universal 1/0 6/7
UNIV8/9 Universal slot Universal 1/0 8/9
UNIV10/11 Universal slot Universal 1/0 10/11
UNIV12/13 Universal slot Universal 1/0 12/13
UNIV14/15 Universal slot Universal 1/0 14/15
LINK Green led RX link up

EVIN Yellow led RX event in

EVOUT Yellow led RX event led (mapped)
RXFAIL Red led RX violation detected

PXle-EVR-300 Front Panel Connections

The PXle-EVR-300 is available in two different front panel configurations: the PXle-EVR-300U
with two Universal 1/O slots and the PXle-EVR-3001 with a VHDCI connector for interfacing to
an external 1/0 box, the IFB-300.

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 31 of 77

D ﬁ § _ O Orx ’—I
o g z
O g’ D>: _________ O
® LLI o
I:l g © & CC: :DJ z
g A T T T T T T T T LINK
Figure 15: PXle-EVR-3001 Event Receiver Front Panel
D '§ S ™0 QOrx l—‘
m @ z
S RS-
[] HOK: 2 ©
§ 2 :
s o UNIVO UNIV1 UNIV2 UNIV3 LINK

Figure 16: PXle-EVR-300U Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led
RX led

TX led

LINKTX
LINK RX
TTL INO
TTL IN1
UNIVO0/1
UNIV2/3
VHDCI

Style
RGB Led

RGB Led

LC

LC
LEMO-EPY
LEMO-EPY
Universal slot
Universal slot
VHDCI

Level

optical
optical
TTL
TTL

LVDS

Description

Red: receiver violation detected
Green: RX link OK, violation flag
cleared

Yellow: RX link OK, violation
detected

Green: link OK, flashes when event
code received

Red: Flashes on led event
Transmit Optical Output (TX)
Receiver Optical Input (RX)
External Event Input

External Event Input

Universal Output 0/1

Universal Output 2/3

Connection to IFB-300

The IFB-300 Universal 1/0Os are mapped to UNIV4 to UNIV19 i.e. IFB-300 UNIVO shows up as
UNIV4 in the register map.

PXle-EVR-300 Backplane Connections

The PXle-EVR-300 provides a number of backplane 1/O signals, conventional PXI timing and
synchronization signals and new differential signals introduced by the PXI Express specification.

The PXI trigger bus and the the PXI star triggers are bidirectional. The direction of the signal path
is specified by the output mapping register: the output has to be tri-stated for an external device to

drive the signal.

| PXle Signal

| EVR Input Signal | EVR Output Signal | Description |

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 32 of 77

PXI1 TRIG[0:7] TBIN[0:7] TBOUTI[0:7] PXI trigger bus

PXI_STAR][0:16] TBIN[8:24] TBOUT[8:24] PXI star triggers

PXle_DSTARAJ[0:16] | n/a TBOUT[25:41] PXle differential
LVPECL star
triggers

PXle_DSTARB[0:16] | n/a TBOUT[42:58] PXle differential
LVDS star
triggers

PXle DSTARCI0:16] | TBIN[25:41] n/a PXle differential

LVDS star input
signals

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 330f 77

VME-EVR-230 and VME-EVR-230RF Network Interface

A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options.
It is also possible to control the module over the network interface.

Assigning an IP Address to the Module

By default the modules uses DHCP (dynamic host configuration protocol) to acquire an IP
address. In case a lease cannot be acquired the IP address set randomly in the 169.254.x.x subnet.
The board can be programmed to use a static address instead if DHCP is not available.

The module can be located looking at the lease log of the DHCP server or using a Windows tool
called Locator.exe.

Using Telnet to Configure Module
To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of
telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command Description

b Show/change boot parameters, IP address etc.

d Dump 16 bytes of memory

hi/? Show Help

m <address> [<data>] Read/Write FPGA CR/CSR, Function 0

r Reset Board

S Save boot configuration & dynamic configuration values into non-

volatile memory

t Tune delay line for event clock recovery
+ Manually increase delay line delay
- Manually decrease delay line delay ™
u Update 1P2022 software
Quit Telnet

q
*) This option has been added with IP2022 software version 060309 for VME-EVR-230RF (displayed in output from
help command)

Boot Configuration (command b)

Command b displays the current boot configuration parameters of the module. The parameter
may be changed by giving a new parameter value. The following parameters are displayed:

Parameter Description
Use DHCP 0 = use static IP address, 1 = use DHCP to acquire address, net mask
etc.

IP address IP address of module

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 34 of 77

Subnet mask Subnet mask of module
Default GW Default gateway
FPGA mode FPGA configuration mode

0 — FPGA is not configured after power up
1 — FPGA configured from internal Flash memory
2 — FPGA is configured from FTP server

FTP server FTP server IP address where configuration bit file resides

Username FTP server username

Password FTP server password

FTP Filename FTP server configuration file name

Flash Filename Configuration file name on internal flash

ps divider Integer divider to get from event clock to 1IMHz, e.g. 125 for
124.9135 MHz

Fractional divider Micrel SY87739UMI fractional divider configuration word to set

configuration word refenrence for event clock

Note that after changing parameters the parameters have to be saved to internal flash by issuing
the Save boot configuration (s) command. The changes are applied only after resetting the
module using the reset command or hardware reset/power sequencing.

Memory dump (command d)

This command dumps 16 bytes of memory starting at the given address, if the address is omitted
the previous address value is increased by 16 bytes.

The most significant byte of the address determines the function of the access:

Address Function
0x78000000 CR/CSR space access
0x7a000000 EVR registers access

To dump the start of the EVR register map issue the ‘d” command from the telnet prompt:
VME-EVR-230RF -> d 7a000000 J

Addr 7a000000: 1005 0001 0000 0000 0000 0000 0000 0000
VME-EVR-230RF -> d

Addr 7a000010: 0000 0000 O0OOO OOOO 0000 0000 0000 0000
VME-EVR-230RF ->

Memory modify (commands d and m)
The access size is always a short word i.e. two bytes.

To check the status register from the telnet prompt:

VME-EVR-230RF -> m 7a000000 A
Addr 7a000000 data 1005
VME-EVR-230RF ->

To clear the violation flag issue:
VME-EVR-230RF -> m 7a000000 1005 .l

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 350f 77

Addr 7a000000 data 0000
VME-EVR-230RF ->

Tuning Delay Line (command t)

The VME Event Receiver VME-EVR-230RF has to be configured for proper event clock rate and
the on-board delay line has to be tuned for the operating conditions. Before setting up the board
make sure you have an Event Generator with the correct event clock connected to the Event
Receiver. Also, let the EVR reach operating temperature (power on for 10 minutes in crate). See
previous section for setting up the event clock rate.

To start tuning issue command ‘t” from the telnet prompt:

VME-EVR-230RF -> t J

Starting tuning...

Adjusted sampling phase to 75
Initial DCM phase -85

Fine tuned sampling phase to 78
Final DCM phase -73.
VME-EVR-230RF ->

After tuning the tuned values have to be stored in non-volatile memory:

VME-EVR-230RF -> s

Confirm save (yes/no) ? yes J
Configuration saved.
VME-EVR-230RF ->

Upgrading IP2022 Microprocessor Software (command u)

To upgrade the Ubicom 1P2022 microprocessor software download the upgrade image containing
the upgrade to the module using TFTP:

Linux

In Linux use e.g. interactive tftp:
$ tftp 192.168.1.32
tftp> bin

tftp> put upgrade.bin /fw
tftp> quit

Windows
In Windows command prompt issue the following command:

C:\> tftp —i 192.168.1.32 PUT upgrade.bin /fw

When the upgrade image has been downloaded and verified, enter at the telnet prompt following:

VME-EVR-230 -> u
Really update firmware (yes/no) ? yes

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 36 of 77

Self programming triggered.

The Event Receiver starts programming the new software and restarts.

Upgrading FPGA Configuration File

When the FPGA configuration file resides in internal flash memory a new file system image has
to be downloaded to the module. This is done using TFTP protocol:

Linux

In Linux use e.g. interactive tftp:
$ tftp 192.168.1.32
tftp> bin

tftp> put filesystem.bin /
tftp> quit

wWindows
In Windows command prompt issue the following command:

C:\> tftp —-i 192.168.1.32 PUT filesystem.bin /

Now the FPGA configuration file has been upgraded and the new configuration is loaded after
next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the
filesystem image before restarting the module. This is done following:

Linux
In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> get / verify.bin

tftp> quit

$ diff filesystem.bin verify.bin
$

If files differ you should get following message:
Binary files filesystem.bin and verify.bin differ

Windows
In Windows command prompt issue the following command:

C:\> tftp —-i 192.168.1.32 GET / verify.bin
C:\> fc /b filesystem.bin verify.bin
Comparing files filesystem.bin and verify.bin
FC: no differences encountered

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 370f 77

UDP Remote Programming Protocol

The VME-EVR can be remotely programmed using the 10baseT Ethernet interface with a
protocol over UDP (User Datagram Protocol) which runs on top of IP (Internet Protocol). The
default port for remote programming is UDP port 2000. The UDP commands are built upon the
following structure:

access_type (1 byte) status (1 byte) data (2 bytes)
address (4 bytes)
ref (4 bytes)

The first field defines the access type:

access_type Description
0x01 Read Register from module
0x02 Write and Read back Register from module

The second field tells the status of the access:

Status Description

0 Command OK

-1 Bus ERROR (Invalid read/write address)
-2 Timeout (FPGA did not respond)

-3 Invalid command

The access size is always a short word i.e. two bytes. The most significant byte of the address
determines the function of the access:

Address Function
0x78000000 CR/CSR space access
0x7a000000 EVR registers access

Read Access (Type 0x01)
The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte) status (1 byte) data (2 bytes)
0x01 0x00 0x0000
address (4 bytes)
0x7a000000 (Control and Status register Function 0 address)
ref (4 bytes)
0x00000000

If the read access is successful the VME-EVR replies to the same host and port the message came
from with the following packet:

access_type (1 byte) status (1 byte) data (2 bytes)
0x01 0x00 0x0032
address (4 bytes)
0x7a000000 (Control and Status register Function 0 address)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 38 of 77

ref (4 bytes)
0x00000000

Write Access (Type 0x02)
The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte) status (1 byte) data (2 bytes)
0x02 0x00 0x0001
address (4 bytes)
0x7a000002 (Mapping RAM Address register Function 0 address)
ref (4 bytes)
0x00000000

If the write access is successful the VME-EVR replies to the same host and port the message
came from with the following packet:

access_type (1 byte) status (1 byte) data (2 bytes)
0x02 0x00 0x0001
address (4 bytes)
0x80000000 (Mapping RAM Address register Function 0 address)
ref (4 bytes)
0x00000000

Notice that in the reply message the data returned really is the data read from the address
specified in the address field so one can verify that the data really was written ok.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 39 of 77

cRIO-EVR-300

Connections

The cRIO-EVR connects to the CompactRIO backplane through a DSUB connector. The pin
usage is as follows:

cRIO (DSUB) signal | EVR signal Description

IDSEL UART RXD Asynchronous serial data receive
USERO UNIV3 Output

USER1 UNIV2 Output

USER?2 UNIV1 Output

USER3 UNIVO0 Output

USER4 UNIV3 Input

USER5 UNIV2 Input

USER6 UNIV1 Input

USER7 UNIVO Input

USERS8 UART TXD Asynchronous serial data transmit

The serial interface runs with a baud rate of 115200 baud, 8 bit data, one stop bit, no parity and
no handshaking.

Boot Monitor

The boot monitor is started in case the cRIO-EVR receives a ‘@’ character immediately after it
has been powered up. The boot monitor can be used to flash the cRIO-EVR firmware. It supports
the following commands:

Command Description

EPI Erase FPGA Primary configuration Image
Outputs ‘+’ for each successful sector erase

EGI Erase FPGA Golden configuration Image
Outputs ‘+’ for each successful sector erase

L Load S3-records into RAM
‘@’ to stop loading records

V Verify S3-records with RAM
‘@’ to stop verifying records

PPI Program FPGA Primary Image from RAM to flash.
Outputs ‘+’ for each successful page program

PGI Program FPGA Golden Image from RAM to flash.
Outputs ‘+’ for each successful page program

RP Load FPGA Primary Image from flash into RAM

RG Load FPGA Golden Image from flash into RAM
Exit Boot Monitor

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 40 of 77

Firmware Upgrade (on Linux)

The configuration flash memory of the cRIO-EVR holds two firmware images: a primary image
and a golden image. The primary image is normally loaded and upgraded. If the primary image
for gets corrupted because of a programming error or power failure during upgrade the golden
image gets loaded which will allow retrying the firmware upgrade of the primary image.

This upgrade procedure will require the cRIO-EVR-UNIVIO —board connected to the cRIO-
EVR. The firmware can be upgraded on a CompactRIO system using a tool written in LabView.

Connect a USB cable to the cRIO-EVR-UNIVIO USB connector and start your favourite
terminal program with 115200 baud, 8 bit data, one stop bit, no parity and no handshaking.

1. Keep the ‘@’ key pressed, power up the cRIO-EVR and wait until the cRIO-EVR
responds with periods ‘.’

2. Enter the command ‘EPI’ (the characters are not echoed back). The cRIO-EVR will

respond with a number of ‘+” one for each erased sector and a final *.” when complete.

Enter the command ‘L’

4. From a command window send the new firmware image to the serial port e.g.
dd if=firmware file.exo of=/dev/ttyusb0

5. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-
records. The cRIO-EVR will responds with the number of S-records received and the
number of checksum errors, two concatenated 32-bit hexadecimal numbers

6. Enter command ‘PPI’ to program the firmware image from RAM to flash. The cRIO-
EVR will output lots of “+°, one for each successful page program and a final .’

7. The following steps are optional: Enter command ‘RP’ to refresh the RAM image from

flash.

Enter command 'V’

9. From a command window send the new firmware image to the serial port e.g.
dd if=firmware file.exo of=/dev/ttyusbO

10. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-
records. The cRIO-EVR will responds with the number of S-records received and the
number of checksum errors, two concatenated 32-bit hexadecimal numbers

w

o

Programming Details

VME CR/CSR Support

The VME Event Receiver modules provides CR/CSR Support as specified in the VMEG4x
specification. The CR/CSR Base Address Register is determined after reset by the inverted state
of VME®64x P1 connector signal pins GA4*-GAO0*. In case the parity signal GAP* does not
match the GAx™* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which
corresponds to slot number 31.

Note: the boards can be used in standard VME crates where geographical pins do not exist, in this
case the user may either insert jumpers to set the geographical address or use the default setting
when the board’s CR/CSR base address will be set to 0xf8. The jumper settings for a non-
VME64x crate as as follows:

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 41 of 77

slot GAP* GA4* GA3* GA2* GAl* GAO*
1 open open open open open Jumper
2 open open open open Jumper open
3 Jumper open open open Jumper Jumper
4 open open open Jumper open open
5 Jumper open open Jumper open Jumper
6 Jumper open open Jumper Jumper open
7 open open open Jumper Jumper Jumper
8 open open Jumper open open open
9 Jumper open Jumper open open Jumper
10 Jumper open Jumper open Jumper open
11 open open Jumper open Jumper Jumper
12 Jumper open Jumper Jumper open open
13 open open Jumper Jumper open Jumper
14 open open Jumper Jumper Jumper open
15 Jumper open Jumper Jumper Jumper Jumper
16 open Jumper open open open open
17 Jumper Jumper open open open Jumper
18 Jumper Jumper open open Jumper open
19 open Jumper open open Jumper Jumper
20 Jumper Jumper open Jumper open open
21 open Jumper open Jumper open Jumper

After power up or reset the board responds only to CR/CSR accesses with its geographical
address. Prior to accessing Event Receiver functions the board has to be configured by accessing
the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board 1D etc. to identify
boards plugged in different VME slots. The following table lists the required field to locate an
Event Receiver module.

CR address Register VME-EVR-230RF
0x27, 0x2B, 0x2F Manufacturer’s ID (IEEE 0x000EB2

oul)
0x33, 0x37, 0x3B, 0x3F Board ID 0x455246E6

For convenience functions are provided to locate VMEG4x capable boards in the VME crate.

STATUS vmeCRFindBoard(int slot, UINT32 ieee oui, UINT32 board id,
int *p slot);

To locate the first Event Receiver in the crate starting from slot 1, the function has to be called
following:

#include “vme64x cr.h”

int slot = 1;

int slot evr;

vmeCRFindBoard (slot, MRF IEEE OUI, MRF EVR200RF BID, é&slot evr);

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 42 of 77

If this function returns OK, an Event Receiver board was found in slot slot evr.

Event Receiver Function 0,1 and 2 Registers

The Event Receiver specific register are accessed via Function 0 and Function 1 as specified in
the VMEG64x specification. The access size for Function 0 has been limited to 2 kbytes (0x0800)
so not all EVR registers are accessible through this Function. The access size for Functions 1 and
2 is 256 kbytes, so this function should not be used for A16 access. Contrary to the VMEG4x
specification the address/address modifier compare logic does not distinguish between privileged
and non-privileged accesses and accepts both.

To enable a Function, the address decoder compare register for the Function in CSR space has to
be programmed. For convenience a function to perform this is provided, too:

STATUS vmeCSRWriteADER (int slot, int func, UINT32 ader);

To configure Function 0 of a Event Receiver board in slot 3 to respond to A16 accesses at the
address range 0x1800-0x1FFF the function has to be called with following values:

vmeCSRWriteADER (3, 0, O0x18A4);

ADER contents are composed of the address mask and address modifier, the above is the same
as:

vmeCSRWriteADER (3, 0, (slot << 11) | (VME AM SUP SHORT IO << 2));

To get the memory mapped pointer to the configured Function O registers on the Event Receiver
board the following VxWorks function has to be called:

MrfEvrStruct *pEvr;
sysBusToLocalAdrs (VME AM SUP SHORT IO, (char *) (slot << 11),
(void *) pEvr);

Note: using the data transmission capability requires more than 4 kbytes, so using function 1 with
addressing mode A24 is suggested, following:

vmeCSRWriteADER (3, 1, (slot << 19) | (VME_AM STD USR DATA << 2));

MrfEvrStruct *pEvr;

sysBusToLocalAdrs (VME AM STD USR DATA, (char *) (slot << 19),
(void *) pEvr);

cPCI-EVR-300 and PCle-EVR-300 Firmware Upgrade

The cPCI-EVR-300 and PCle-EVR-300 have a configuration memory that holds two
configuration images, a so called primary and golden image. The golden image is a backup image
that is loaded in case loading of the primary image fails due to a programming error. The primary
image can be upgraded with the following command after loading the driver in Linux:

dd if=new image.bit of=/dev/er3al

Micro-Research Finland Oy E;’ggfz%”gf EyR'MRM'OW

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

A power cycle is required to load the new configuration image on the PCle-EVR-300. A reboot is
sufficient for the cPCI-EVR-300.

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Register Map

Address
0x000
0x004
0x008
0x00C
0x010
0x020
0x024
0x02C
0x040
0x04C
0x050
0x05C
0x060
0x064
0x068
0x06C
0x070
0x074
0x078
0x07C
0x080

0x088

0x090
0x094
0x098
0x0A0
0x0A4
0x100
0x104
0x108
0x200
0x204
0x208
0x20C
0x210
0x220

0x2F0

Register
Status
Control
IrgFlag
IrgEnable
PulselrgMap
DataBufCitrl

TxDataBufCtrl

FWVersion
EvCntPresc
UsecDivider
ClockControl
SecSR
SecCounter
EventCounter
SecLatch
EvCntLatch
EVFIFOSec

EVFIFOEvCnt

EVFIFOCode
LogStatus
FracDiv

RxInitPS

GPIODir
GPIOIn
GPIOOut
SPIData
SPIControl
Prescaler_0
Prescaler_1
Prescaler_2
PulseOCitrl
PulseOPresc
PulseODelay
PulseOWidth

Type

UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT16
UINT32
UINT32

UINT32

UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

Document: EVR-MRM-007
Page: 44 of 77

Description

Status Register

Control Register

Interrupt Flag Register

Interrupt Enable Register

Mapping register for pulse interrupt

Data Buffer Control and Status Register
TX Data Buffer Control and Status Register
Firmware Version Register

Event Counter Prescaler

Divider to get from Event Clock to 1 MHz
Event Clock Control Register

Seconds Shift Register

Timestamp Seconds Counter

Timestamp Event Counter

Timestamp Seconds Counter Latch
Timestamp Event Counter Latch

Event FIFO Seconds Register

Event FIFO Event Counter Register

Event FIFO Event Code Register

Event Log Status Register

Micrel SY87739L Fractional Divider Configuration
Word

Reserved for Initial value for RF recovery DCM
phase shift (VME-EVR-230RF)

Front Panel UnivlO GPIO signal direction
Front Panel UnivlO GPIO input register
Front Panel UnivlO GPIO output register
SPI Data Register

SPI Control Register

Prescaler 0 Divider

Prescaler 1 Divider

Prescaler 2 Divider

Pulse 0 Control Register

Pulse 0 Prescaler Register

Pulse 0 Delay Register

Pulse 0 Width Register

Pulse 1 Registers

Pulse 2 Registers

Pulse 15 Registers

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

0x400
0x402
0x404
0x406
0x408
0x40A
0x40C
0x40E
0x440
0x442
0x444
0x446
0x448
Ox44A
0x44C
Ox44E
0x450
0x452
0x480
0x482
0x484
0x486
0x488
0x48A
0x48C
0x48E
0x490
0x492
0x494
0x496
0x498
0x49A
0x49C
0x49E
0x4A0
0x4A2
0x4A4
0x4A6
0x4A8
Ox4AA
Ox4AC
Ox4AE
0x4B0
0x4B2
0x4B4

FPOutMap0
FPOutMap1l
FPOutMap2
FPOutMap3
FPOutMap4
FPOutMap5
FPOutMap6
FPOutMap7
UnivOutMap0
UnivOutMapl
UnivOutMap2
UnivOutMap3
UnivOutMap4
UnivOutMap5
UnivOutMap6
UnivOutMap7
UnivOutMap8
UnivOutMap9
TBOutMap0
TBOutMap1
TBOutMap?2
TBOutMap3
TBOutMap4
TBOutMap5
TBOutMap6
TBOutMap7
TBOutMap8
TBOutMap9
TBOutMap10
TBOutMap11
TBOutMap12
TBOutMap13
TBOutMap14
TBOutMap15
TBOutMap16
TBOutMap17
TBOutMap18
TBOutMap19
TBOutMap20
TBOutMap21
TBOutMap22
TBOutMap23
TBOutMap24
TBOutMap25
TBOutMap26

UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16

Document: EVR-MRM-007
Page: 45 of 77

Front Panel Output O Map Register

Front Panel Output 1 Map Register

Front Panel Output 2 Map Register

Front Panel Output 3 Map Register

Front Panel Output 4 Map Register

Front Panel Output 5 Map Register

Front Panel Output 6 Map Register

Front Panel Output 7 Map Register

Front Panel Universal Output 0 Map Register
Front Panel Universal Output 1 Map Register
Front Panel Universal Output 2 Map Register
Front Panel Universal Output 3 Map Register
Front Panel Universal Output 4 Map Register
Front Panel Universal Output 5 Map Register
Front Panel Universal Output 6 Map Register
Front Panel Universal Output 7 Map Register
Front Panel Universal Output 8 Map Register
Front Panel Universal Output 9 Map Register
Transition Board Output 0 Map Register
Transition Board Output 1 Map Register
Transition Board Output 2 Map Register
Transition Board Output 3 Map Register
Transition Board Output 4 Map Register
Transition Board Output 5 Map Register
Transition Board Output 6 Map Register
Transition Board Output 7 Map Register
Transition Board Output 8 Map Register
Transition Board Output 9 Map Register
Transition Board Output 10 Map Register
Transition Board Output 11 Map Register
Transition Board Output 12 Map Register
Transition Board Output 13 Map Register
Transition Board Output 14 Map Register
Transition Board Output 15 Map Register
Transition Board Output 16 Map Register
Transition Board Output 17 Map Register
Transition Board Output 18 Map Register
Transition Board Output 19 Map Register
Transition Board Output 20 Map Register
Transition Board Output 21 Map Register
Transition Board Output 22 Map Register
Transition Board Output 23 Map Register
Transition Board Output 24 Map Register
Transition Board Output 25 Map Register
Transition Board Output 26 Map Register

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

0x4B6
0x4B8
Ox4BA
0x4BC
Ox4BE
0x500
0x504
0x580
0x584
0x588
0x58C
0x590
0x594
0x598
0x59C
0x600
0x604
0x608
0x60C
0x610

0x614
0x616
0x618
0x620
0x624
0x628
0x62C
0x630
0x634
0x636
0x638
0x640
0x644
0x648

0x64C
0x650

TBOutMap27
TBOutMap28
TBOutMap29
TBOutMap30
TBOutMap31
FPInMap0
FPInMap1
GTXO0Dly
GTX1Dly
GTX2Dly
GTX3Dly
GTX4Dly
GTX5Dly
GTX6Dly
GTX7Dly
CML4Pat00
CML4Pat01
CMLA4Pat10
CML4Patl1
CML4Ena
GTXOCtrl
CML4HP
GTXO0HP
CMLALP
GTXOLP
CML4Samp
GTX0Samp
CML5Pat00
CML5Pat01
CML5Pat10
CML5Pat11
CML5Ena
GTX1Ctrl
CML5HP
GTX1HP
CMLS5LP
GTX1LP
CML5Samp
GTX1Samp
CML6Pat00
CML6Pat01
CML6Pat10
CML6Patl11
CMLG6Ena
GTX2Ctrl

UINT16
UINT16
UINT16
UINT16
UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

UINT16
UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT16
UINT16
UINT32
UINT32
UINT32
UINT32

UINT32
UINT32

Document: EVR-MRM-007
Page: 46 of 77

Transition Board Output 27 Map Register
Transition Board Output 28 Map Register
Transition Board Output 29 Map Register
Transition Board Output 30 Map Register
Transition Board Output 31 Map Register
Front Panel Input 0 Mapping Register
Front Panel Input 1 Mapping Register
GTX Output 0 Fine Delay Register

GTX Output 1 Fine Delay Register

GTX Output 2 Fine Delay Register

GTX Output 3 Fine Delay Register

GTX Output 4 Fine Delay Register

GTX Output 5 Fine Delay Register

GTX Output 6 Fine Delay Register

GTX Output 7 Fine Delay Register

20 bit output pattern for state low

20 bit output pattern for state rising edge
20 bit output pattern for state falling edge
20 bit output pattern for state high

CML 4 Output Control Register

CML 4 Output High Period Count
CML 4 Output Low Period Count

CML 4 Output Number of 20 bit word patterns
GTXO0 Output Number of 40 bit word patterns
20 bit output pattern for state low

20 bit output pattern for state rising edge

20 bit output pattern for state falling edge

20 bit output pattern for state high

CML 5 Output Control Register

CML 5 Output High Period Count
CML 5 Output Low Period Count

CML 5 Output Number of 20 bit word patterns
GTX1 Output Number of 40 bit word patterns
20 bit output pattern for state low

20 bit output pattern for state rising edge

20 bit output pattern for state falling edge

20 bit output pattern for state high

CML 6 Output Control Register

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

0x654

0x656

0x658

0x670
0x674
0x676
0x678
0x690
0x694
0x696
0x698
0x6B0
0x6B4
0x6B6
0x6B8
0x6D0
0x6D4
0x6D6
0x6D8
OX6E0
Ox6E4
OX6E6
OX6E8
0x800 —
OxFFF
0x1000 —
Ox17FF
0x1800 —
Ox1FFF
0x2000 —
Ox3FFF
0x4000 —
OX5FFF
0x6000 —
OX7FFF
0x8000 —
0x80FF
0x8100 —
Ox81FF
0x8200 —
0x82FF
0x8300 —

CML6HP
GTX2HP
CML6LP
GTX2LP
CML6Samp
GTX2Samp
GTX3Ctrl
GTX3HP
GTX3LP
GTX3Samp
GTXACtrl
GTX4HP
GTX4LP
GTX4Samp
GTX5Ctrl
GTX5HP
GTX5LP
GTX5Samp
GTX6Ctrl
GTX6HP
GTX6LP
GTX6Samp
GTX7Ctrl
GTX7HP
GTX7LP
GTX7Samp
DataBuf

TxDataBuf
EventLog
MapRam1
MapRam?2
configROM

scratchRAM

SFPEEPROM

SFPDIAG

UINT16

UINT16

UINT32

UINT32
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT32

Document: EVR-MRM-007
Page: 47 of 77

CML 6 Output High Period Count
CML 6 Output Low Period Count

CML 6 Output Number of 20 bit word patterns
GTX2 Output Number of 40 bit word patterns
GTX3 Output Control Register

GTX3 Output High Period Count

GTX3 Output Low Period Count

GTX3 Output Number of 40 bit word patterns
GTX4 Output Control Register

GTX4 Output High Period Count

GTX4 Output Low Period Count

GTX4 Output Number of 40 bit word patterns
GTX5 Output Control Register

GTX5 Output High Period Count

GTX5 Output Low Period Count

GTX5 Output Number of 40 bit word patterns
GTX6 Output Control Register

GTX6 Output High Period Count

GTX6 Output Low Period Count

GTX6 Output Number of 40 bit word patterns
GTX7 Output Control Register

GTX7 Output High Period Count

GTX7 Output Low Period Count

GTX7 Output Number of 40 bit word patterns
Data Buffer Receive Memory

Diagnostics counters

Data Buffer Transmit Memory
512 x 16 byte position Event Log
Event Mapping RAM 1

Event Mapping RAM 2

SFP Transceiver EEPROM contents (SFP address

0xA0)
SFP Transceiver diagnostics (SFP address 0xA2)

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Ox83FF

0x20000- CML4PMEM
Ox23FFF GTXOMEM
0x24000 - CMLSPMEM
Ox27FFF GTXIMEM
0x28000- CML6PMEM
Ox2BFFF GTX2MEM
0x2C000 - GTX3MEM
Ox2FFFF

0x30000 - GTX4AMEM
Ox33FFF

0x34000 - GTX5MEM
Ox37FFF

0x38000 - GTX6MEM
Ox3BFFF

0x3C000 - GTX7MEM
Ox3FFFF

Status Register

Document: EVR-MRM-007
Page: 48 of 77

Pattern memory:
8k bytes CML output 4 (VME-EVR-230RF)
16k bytes GTX output 0 (cPCI-EVRTG-300)
Pattern memory:
8k bytes CML output 5 (VME-EVR-230RF)
16k bytes GTX output 1 (cPCI-EVRTG-300)
Pattern memory:
8k bytes CML output 6 (VME-EVR-230RF)
16k bytes GTX output 2 (cPCI-EVRTG-300)
Pattern memory:
16k bytes GTX output 3 (cPCI-EVRTG-300)
Pattern memory:
16k bytes GTX output 4 (cPCI-EVRTG-300)
Pattern memory:
16k bytes GTX output 5 (cPCI-EVRTG-300)
Pattern memory:
16k bytes GTX output 6 (cPCI-EVRTG-300)
Pattern memory:
16k bytes GTX output 7 (cPCI-EVRTG-300)

address _ bit 31 bit30 bit29 Bit28 bit27 bit26 bit25 bit24
0x000 | DBUS7 | DBUS6 | DBUS5 | DBUS4 | DBUS3 | DBUS?2 | DBUS1 | DBUSO |
address bit 23 bit22 bit21 bit20 bit19 bit18 bit17 bit16
0x001 | | | | | | | | LEGVIO |
address bit 15 bit14 bit13 bit12 bit1l bit10 bit9 bit 8
0x002 | | | | | | | | |
address _ hit7 bit 6 bit 5 Bit4 bit3 bit 2 bit 1 bit 0

0x003 | SFPMOD | LINK | FIFOSTP |

| | | |

Bit Function

DBUSY Read status of DBUS bit 7
DBUS6 Read status of DBUS bit 6
DBUS5 Read status of DBUS bit 5
DBUS4 Read status of DBUS bit 4
DBUS3 Read status of DBUS bit 3
DBUS?2 Read status of DBUS bit 2
DBUS1 Read status of DBUS bit 1
DBUSO Read status of DBUS bit 0
LEGVIO

Legacy VIO (series 100, 200 and 230)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 49 of 77
SFPMOD SFP module status:
‘0’ — plugged in
‘1> —no module installed
LINK Link status:
‘0’ — link down
‘1’ —link up
FIFOSTP Event FIFO stopped flag

Control Register

address bit 31

bit 30 bit 29 bit 28 bit27 Obit26 bit 25 bit 24

0x004 [EVREN | EVFWD | TXLP | RXLP | OUTEN| SRST | LEMDE | GTXIO

address bit 23

bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x005 | CDREN |

address bit 15

bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x006 | | TSDBUS | RSTS | | | LTS [MAPEN | MAPRS |

address bit 7

bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x007 | LOGRS | LOGEN | LOGDIS | LOGSE | RSFIFQO | | |

Bit
EVREN
TXLP

RXLP

OUTEN

SRST
LEMDE

GTXIO

CDREN

TSDBUS

RSTS

LTS

Function

Event Receiver Master enable

Transmitter loopback:

0 — Receive signal from SFP transceiver (normal operation)

1 - Loopback EVR TX into EVR RX

Receiver loopback:

0 — Transmit signal from EVR on SFP transceiver TX

1 - Loopback SFP RX on SFP TX

Output enable for FPGA external components / IFB-300 (cPCI-EVRTG-
300, PCle-EVR-300, PXle-EVR-3001)

0 — disable outputs

1 — enable outputs

Soft reset IP

Little endian mode (cPCI-EVR-300, PCle-EVR-300)

0 — PClI core in big endian mode (power up default)

1 - PClI core in little endian mode

GUN-TX output hardware inhibit override

0 — honor hardware inhibit signal (default)

1 — inhibit override, don’t care about hardware inhibit input state
PCle-EVR-300 External Clock and Data recovery enable

0 — CDR Bypassed

1 - CDR Enabled

Use timestamp counter clock on DBUS4

Reset Timestamp. Write 1 to reset timestamp event counter and timestamp
latch.

Latch Timestamp: Write 1 to latch timestamp from timestamp event

Micro-Research Finland Oy

Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 50 of 77

MAPEN
MAPRS

LOGRS
LOGEN
LOGDIS
LOGSE
RSFIFO

counter to timestamp latch.

Event mapping RAM enable.

Mapping RAM select bit for event decoding:

0 — select mapping RAM 1

1 — select mapping RAM 2.

Reset Event Log. Write 1 to reset log.

Enable Event Log. Write 1 to (re)enable event log.
Disable Event Log. Write 1 to disable event log.
Log Stop Event Enable.

Reset Event FIFO. Write 1 to clear event FIFO.

Interrupt Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x008 | | | | | | | | |
address Bit7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x00b | | IFLINK | IFDBUF | IFHW [IFEV |[IFHB |IFFF [IFVIO |
Bit Function
IFLINK Link state change interrupt flag
IFDBUF Data buffer flag
IFHW Hardware interrupt flag (mapped signal)
IFEV Event interrupt flag
IFHB Heartbeat interrupt flag
IFFF Event FIFO full flag
IFVIO Receiver violation flag

Interrupt Enable Register

address

Bit 31

bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x00c | IRQEN | PCIIE | | | | | |

address Bit7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x00f | | IELINK | IEDBUF | IEHW [IEEV [IEHB |IEFF | IEVIO |

Bit Function

IRQEN Master interrupt enable:
0 — disable all interrupts
1 — allow interrupts

PCIIE PCI core interrupt enable (cPCI-EVR-300, PCle-EVR-300, PXle-EVR-
300)
This bit is used by the low level driver to disable further interrupts before
the first interrupt has been handled in user space

IELINK Link state change interrupt flag

IEDBUF Data buffer interrupt enable

IEHW Hardware interrupt enable (mapped signal)

IEEV Event interrupt enable

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: S1lof 77

IEHB Heartbeat interrupt enable
IEFF Event FIFO full interrupt enable
IEVIO Receiver violation interrupt enable

Hardware Interrupt Mapping Register

address Bit7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x013 Mapping ID (see Table 1 for mapping IDs)

Receive Data Buffer Control and Status Register

address Bit15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x022 | DBRX/ | DBRDY/ | DBCS DBEN RXSIZE(11:8)
DBENA | DBDIS

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x023 | RXSIZE(7:0) |
Bit Function
DBRX Data Buffer Receiving (read-only)
DBENA Set-up for Single Reception (write ‘1° to set-up)
DBRDY Data Buffer Transmit Complete / Interrupt Flag
DBDIS Stop Reception (write ‘1° to stop/disable)
DBCS Data Buffer Checksum Error (read-only)
Flag is cleared by writing ‘1° to DBRX or DBRDY or disabling
data buffer
DBEN Data Buffer Enable Data Buffer Mode

‘0’ — Distributed bus not shared with data transmission, full speed
distributed bus
‘1’ — Distributed bus shared with data transmission, half speed
distributed bus

RXSIZE Data Buffer Received Buffer Size (read-only)

Transmit Data Buffer Control Register
address bit23 hit22 bit21 bit20 bit19 bit18 bit17 bit16

0x025 | \ \ | TXCPT | TXRUN | TRIG |ENA | MODE |
address _ bit 15 Bit14 bit13 bit 12 bit 11 bit 10 bit 9 bit 8
0x026 | | | | | | DTSZ(10:8) |
address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x027 | DTSZ(7:2) | 0o | o |
Bits Function
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running — set when data transmission has

been triggered and has not been completed yet
TRIG Data Buffer Trigger Transmission

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 52 of 77

Write ‘1 to start transmission of data in buffer

ENA Data Buffer Transmission enable
‘0’ — data transmission engine disabled
‘1’ — data transmission engine enabled
MODE Distributed bus sharing mode
‘0’ — distributed bus not shared with data transmission
‘1’ — distributed bus shared with data transmission
DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

FPGA Firmware Version Register

address bit 31 bit 27 bit 26 bit 24
0x02C | EVR = 0x1 | Form Factor |
address _ bit 23 bit 8
0x02D | Reserved |
address bit 7 bit 0
OX02F | Version ID |
Bits Function
Form Factor 0 — CompactPCI 3U
1-PMC
2 — VME®64x
3 — CompactRIO
4 — CompactPCI 6U
6 — PXle
7—PCle
Event Counter Clock Prescaler Register
address _ bit 15 bit 0
0x042 | Timestamp Event Counter Clock Prescaler Register |
Microsecond Divider Register
address _ bit 15 bit 0
0x04e | Rounded integer value of 1 us * event clock |

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register
should read 50. This value is used e.g. for the heartbeat timeout.

Clock Control Register

address _ bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x052 [RECDCM | RECDCM | RECDCM | EVDCM | EVDCM EVDCM | CGLOCK | RECDCM

RUN INITDONE | PSDONE | STOPPED | LOCKED | PSDONE PSDEC

address _ bit7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x053 | RECDCM | RECDCM | EVDCM | EVDCM | EVDCM | EVDCM [EVDCM | EVCLKSEL |

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Page: 53 of 77

Document: EVR-MRM-007

[PSINC | RES [PSDEC | PSINC | SRUN | SRES |

RES

Bit Function
CGLOCK Micrel SY87739L locked (read-only)
Other bits n/a on cPCI-EVR

Seconds Shift Register
address bit 31

bit 0

0x05¢c | Seconds Shift Register (read-only)

Seconds Counter Register
address bit 31

address bit 31

address bit 31

address bit 31

address bit 31

address bit 31

bit 0
0x060 | Seconds Counter Register (read-only) |
Timestamp Event Counter Register
bit 0
0x064 | Timestamp Event Counter Register (read-only) |
Seconds Latch Register
bit 0
0x068 | Seconds Latch Register (read-only) |
Timestamp Event Latch Register
bit 0
0x06¢C | Timestamp Event Latch Register (read-only) |
FIFO Seconds Register
bit 0
0x070 | FIFO Seconds Register (read-only) |
FIFO Timestamp Register
bit 0
0x074 | FIFO Timestamp Register (read-only) |
FIFO Event Register
bit 0

address bit 7

0x07b | FIFO Event Code Register (read-only)

Note that reading the FIFO event code registers pulls the event code and timestamp/seconds value

from the FIFO for access. The correct order to read an event from FIFO is to first read the event

code register and after this the timestamp/seconds registers in any order. Every read access to the

FIFO event register pulls a new event from the FIFO if it is not empty.

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Event Log Status Register

Document: EVR-MRM-007

Page: 54 of 77

address _ bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x07C | LOGOV | | | | | | | |
address bit 15 bit 9 bit 8 bit 0
OXO7E | | Log writing pointer |
SY87739L Fractional Divider Configuration Word
address _ bit 31 bit 0
0x080 | SY87739L Fractional Divider Configuration Word |
Configuration Word Frequency with 24 MHz reference oscillator
0x00DE816D 125 MHz
Ox00FE816D 124.95 MHz
0x0C928166 124.908 MHz
0x018741AD 119 MHz
0x072F01AD 114.24 MHz
0x049E81AD 106.25 MHz
0x008201AD 100 MHz
0x025B41ED 99.956 MHz
0x0187422D 89.25 MHz
0x0082822D 81 MHz
0x0106822D 80 MHz
0x019E822D 78.900 MHz
0x018742AD 71.4 MHz
0x0C9282A6 62.454 MHz
0x009743AD 50 MHz
0x025B43AD 49.978 MHz
0x0176C36D 49.965 MHz
Prescaler 0 Register
address _ Bit 15 bit 0
0x102 | Prescaler 0 Register |
Prescaler 1 Register
address _ Bit 15 bit 0
0x106 | Prescaler 1 Register |
Prescaler 2 Register
address _ Bit 15 bit 0
0x10a | Prescaler 2 Register |

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 55 of 77

Pulse Generator Registers

address __ bit7 bit 6 bit5 bit4 bit3 bit 2 bit 1 bit 0
0x203 | PxOUT | PxSWS | PxSWR | PxPOL | PXMRE | PXMSE | PXMTE | PXENA |

address bit 31 bit 0
0x204 | Pulse Generator Prescaler Register |
address bit 31 bit 0
0x208 | Pulse Generator Delay Register |
address bit 31 bit 0
0x20C | Pulse Generator Width Register |
Note: addresses shown above are for pulse generator 0.
bit Function
PxOUT Pulse Generator Output (read-only)
PxSWS Pulse Generator Software Set
PxSWC Pulse Generator Software Reset
PxPOL Pulse Generator Output Polarity

0 — normal polarity
1 — inverted polarity
PXMRE Pulse Generator Event Mapping RAM Reset Event Enable
0 — Reset events disabled
1 — Mapped Reset Events reset pulse generator output
PXMSE Pulse Generator Event Mapping RAM Set Event Enable
0 — Set events disabled
1 — Mapped Set Events set pulse generator output
PXMTE Pulse Generator Event Mapping RAM Trigger Event Enable
0 — Event Triggers disabled
1 — Mapped Trigger Events trigger pulse generator
PXENA Pulse Generator Enable
0 — generator disabled
1 — generator enabled

Front Panel Output Mapping Registers

address Bit7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x401 Front panel OUTO Mapping ID (see Table 1 for mapping IDs)

0x403 Front panel OUT1 Mapping ID

0x405 Front panel OUT2 Mapping ID

0x407 Front panel OUT3 Mapping 1D

0x409 Front panel OUT4 Mapping 1D

0x40B Front panel OUT5 Mapping ID

0x40D Front panel OUT6 Mapping ID

0x40F Front panel OUT7 Mapping 1D

Notes:

cPCI-EVR does not have any Front panel outputs.

PMC-EVR has three front panel outputs OUTO to OUT2.
VME-EVR-230 has eight Front panel outputs OUTO to OUT?7.

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 56 of 77

VME-EVR-230RF has seven Front panel outputs OUTO to OUT3 (TTL level), OUT4 to OUT6 CML level (see section about CML
outputs for details).

Universal 1/0 Output Mapping Registers
address Bit7 bit 6 bit 5 Bit4 bit3 bit 2 bit 1 bit 0

0x441 Universal 1/0 UNIVO Mapping ID (see Table 1 for mapping IDs)
0x443 Universal 1/0 UNIV1 Mapping ID
0x445 Universal I/0 UNIV2 Mapping ID
0x447 Universal 1/0 UNIV3 Mapping ID
0x449 Universal 1/0 UNIV4 Mapping ID
0x44b Universal I/0 UNIV5 Mapping ID
0x44d Universal I/0 UNIV6 Mapping ID
Ox44f Universal I/0 UNIV7 Mapping ID
0x451 Universal 1/0 UNIV8 Mapping ID
0x453 Universal I/0 UNIV9 Mapping ID
0x453 Universal 1/0 UNIV10 Mapping ID
0x453 Universal 1/0 UNIV11 Mapping ID
Notes:

cPCI-EVR-220/230 has two Universal I/O slots (four outputs UNIVO to UNIV3). An optional side-by-side module provides three
more slots (six additional outputs UNIV4 to UNIV9).

PMC-EVR does not have any Universal I/O slots.

VME-EVR has two Universal I/O slots (four outputs UNIVO to UNIV3).

cPCI-EVR-300 has six Universal I/0 slots (twelve outputs UNIVO to UNIV11).

Transition Board Output Mapping Registers
address Bit7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x481 Transition Board Output TBOUTO Mapping ID (see Table 1 for mapping I1Ds)
0x483 Transition Board Output TBOUT1 Mapping ID
0x485 Transition Board Output TBOUT2 Mapping ID

Notes:

cPCI-EVRs and cRIO-EVR do not have any Transition board outputs.

Front Panel Input Mapping Registers

address _bit31 Dbit30 bit29 bit28 bit27 bit26 bit 25 bit 24
0x500 | | | EXTLVO | BCKLEO | EXTLEO | EXTEDO | BCKEVO | EXTEVO |

address bit23 bit22 bit21 bit20 bit19 bit18 bit1l7 bit 16
0x501 | TODB7 | TODB6 | TODB5 | TODB4 | TODB3 | TODB2 | TODB1 | TODBO |

address _ bit 15 bit 8
0x502 | Backward Event Code Register for front panel input 0 |

address bit7 bit 0
0x503 | External Event Code Register for front panel input 0 |

address bit31 bit30 bit29 bit 28 bit 27 bit 26 bit 25 bit 24
0x504 | | | EXTLV1 | BCKLEL | EXTLEL | EXTED1 | BCKEV1 | EXTEV1 |

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 57 of 77

0x505 | T1DB7 | T1DB6 | TIDB5 | T1DB4 | T1DB3 | T1DB2 | Ti1DB1 | T1DBO |

address bit 15 bit 8
0x506 | Backward Event Code Register for front panel input 1 |
address bit7 bit 0
0x507 | External Event Code Register for front panel input 1 |
bit Function
EXTLVx Backward HW Event Level Sensitivity for input x
0 — active high
1 —active low

BCKLEx Backward HW Event Level Trigger enable for input x
0 — disable level events
1 — enable level events, send out backward event code every 1 us when
input is active (see EXTLVx for level sensitivity)
EXTLEx External HW Event Level Trigger enable for input x
0 — disable level events
1 —enable level events, apply external event code to active mapping
RAM every 1 us when input is active (see EXTLVX for level sensitivity)
EXTEDx Backward HW Event Edge Sensitivity for input x
0 — trigger on rising edge
1 —trigger on falling edge
BCKEVx Backward HW Event Edge Trigger Enable for input x
0 — disable backward HW event
1 — enable backward HW event, send out backward event code on
detected edge of hardware input (see EXTEDX bit for edge)
EXTEVXx External HW Event Enable for input x
0 — disable external HW event
1 — enable external HW event, apply external event code to active
mapping RAM on edge of hardware input
TxDB7- Backward distributed bus bit enable:
TxDBO 0 — disable distributed bus bit
1 — enable distributed bus bit control from hardware input: e.g. when
TxDB7 is ‘1’ the hardware input x state is sent out on distributed bus bit
7.

CML Output Pattern Registers (CMLxPatxx)

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
| | | | l1omMsB| 18 | 17 | 16 |

bit15 bit14 bit13 bit12 bit1l bit10 bit9 bit 8
| 15 | 14 | 13 | 12 | 11 | 10 [9 [8 |

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| 7 | 6 | 5 | 4] 3 | 2] 1]oLsB |

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 58 of 77

Bit 19 MSB is sent out first, LSB last
Note that GTX pattern registers are accessed through the first four address locations of the GTX
pattern memory.

CML/GTX Output Control Register

Address bit 31 bit 16
0x610 Frequency mode trigger position
Address bit15 bit14 bit13 bit12 bit 11 bit 10 bit 9 bit 8
0x612 | | | | | GTX3MD | GTX2MD | GTXPH1 | GTXPHO |
Address _ bit7 bit 6 bit5 bit4 bit3 bit2 bit 1 bit 0
0x613 |CMLRC |[CMLTL| CMLMD | | CMLRES | CMLPWD | CMLENA |
GTX3MD GUN-TX-300 Mode (cPCI-EVRTG-300 only)

0 - CML/GTX Mode
1 — SFP output in GUN-TX-300 Mode
GTX2MD GUN-TX-203 Mode (cPCI-EVRTG-300 only)
0 - CML/GTX Mode
1 — SFP output in GUN-TX-203 Mode
GTXPHL1:0 GUN-TX-203 Trigger output phase shift (cPCI-EVRTG-300 only)
00 — no delay
01 — output pulse delayed by ¥4 event clock period (~2 ns)
10 — output pulse delayed by % event clock period (~4 ns)
11 — output pulse delayed by % event clock period (~6 ns)

CMLRC CML Pattern recycle
CMLTL CML Frequency mode trigger level
CMLMD CML Mode Select:

00 = classic mode
01 = frequency mode
10 = pattern mode
11 = undefined
CMLRES CML Reset
1 = reset CML output (default on EVR power up)
0 = normal operation
CMLPWD CML Power Down
1 = CML outputs powered down (default on EVR power up)
0 = normal operation
CMLENA CML Enable
0 = CML output disabled (default on EVR power up)
1 = CML output enabled

SFP Module EEPROM and Diagnostics

Small Form Factor Pluggable (SFP) transceiver modules provide a means to identify the module
by accessing an EEPROM. As an advanced feature some modules also support reading dynamic

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 59 of 77

information including module temperature, receive and transmit power levels etc. from the
module. The EVR gives access to all of this information through a memory window of 2 x 256
bytes. The first 256 bytes consist of the EEPROM values and the rest of the advanced values.

Byte # Fieldsize Notes Value Hex
Decimal (bytes)
BASE ID FIELDS

0 1 Type of serial transceiver 03 = SFP transceiver

1 1 Extended identifier of type serial 04 = serial ID module
transceiver definition

2 1 Code for connector type 07=LC

3-10 8 Code for electronic compatibility or

optical compatibility

11 1 Code for serial encoding algorithm

12 1 Nominal bit rate, units of 100
MBits/sec

13 1 Reserved

14 1 Link length supported for 9/125 pum
fiber, units of km

15 1 Link length supported for 9/125 um
fiber, units of 100 m

16 1 Link length supported for 50/125
pum fiber, units of 10 m

17 1 Link length supported for 62.5/125
pm fiber, units of 10 m

18 1 Link length supported for copper,
units of meters

19 1 Reserved

20-35 16 SFP transceiver vendor name
(ASCII)

36 1 Reserved

37-39 3 SFP transceiver vendor IEEE
company ID

40-55 16 Part number provided by SFP
transceiver vendor (ASCII)

56 — 59 4 Revision level for part number
provided by vendor (ASCII)

60 — 62 3 Reserved

63 1 Check code for Base ID Fields

EXTENDED ID FIELDS

64 — 65 2 Indicated which optional SFP
signals are implemented

66 1 Upper bit rate margin, units of %

67 1 Lower bit rate margin, units of %

68 — 83 16 Serial number provided by vendor
(ASCII)

84 -91 8 Vendor’s manufacturing date code

92 -94 3 Reserved

95 1 Check code for the Extended ID

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

96 — 127

128 — 255

256 — 257

258 — 259

260 — 261

262 — 263

264 — 265

266 — 267

268 — 269

270-271

272 - 273

274 - 275

276 - 277

278 — 279

280 —281

282 — 283

32

Document: EVR-MRM-007
Page: 60 of 77

Fields
VENDOR SPECIFIC ID FIELDS
Vendor specific data

Reserved

ENHANCED FEATURE SET MEMORY

Temp H Alarm Signed twos complement
integer in increments of 1/256
°C

Temp L Alarm Signed twos complement

Temp H Warning

Temp L Warning

VCC H Alarm

VCC L Alarm

VCC H Warning

VCC L Warning

Tx Bias H Alarm

Tx Bias L Alarm

Tx Bias H Warning

Tx Bias L Warning

Tx Power H Alarm

Tx Power L Alarm

integer in increments of 1/256
°C

Signed twos complement
integer in increments of 1/256
°C

Signed twos complement
integer in increments of 1/256
°C

Supply voltage decoded as
unsigned integer in increments
of 100 pv

Supply voltage decoded as
unsigned integer in increments
of 100 pv

Supply voltage decoded as
unsigned integer in increments
of 100 uv

Supply voltage decoded as
unsigned integer in increments
of 100 uv

Laser bias current decoded as
unsigned integer in increment
of 2 pA

Laser bias current decoded as
unsigned integer in increment
of 2 pA

Laser bias current decoded as
unsigned integer in increment
of 2 A

Laser bias current decoded as
unsigned integer in increment
of 2 A

Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
[\

Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
[\

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

284 — 285

286 — 287

288 — 289

290 - 291

292 — 293

294 — 295

296 — 311
312 -350
351

352 - 353

354 — 355

356 — 357

358 — 359

360 — 361

362 — 365
366

16

[EXN

(BN

Tx Power H Warning

Tx Power L Warning

Rx Power H Alarm

Rx Power L Alarm

Rx Power H Warning

Rx Power L Warning

Reserved

External Calibration Constants
Checksum for Bytes 256 — 350
Real Time Temperature

Real Time VVCC Power
SupplyVoltage

Real Time Tx Bias Current

Real Time Tx Power

Real Time Rx Power

Reserved
Status/Control

Document: EVR-MRM-007
Page: 61 of 77

Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
HW

Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
I\

Receiver average optical
power decoded as unsigned
integer in increments of 0.1
I\

Receiver average optical
power decoded as unsigned
integer in increments of 0.1
[\

Receiver average optical
power decoded as unsigned
integer in increments of 0.1
W

Receiver average optical
power decoded as unsigned
integer in increments of 0.1
W

Signed twos complement
integer in increments of 1/256
°C

Supply voltage decoded as
unsigned integer in increments
of 100 pVv

Laser bias current decoded as
unsigned integer in increment
of 2 pA

Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
W

Receiver average optical
power decoded as unsigned
integer in increments of 0.1
I\

bit 7: TX_DISABLE State
bit 6 — 3: Reserved

bit 2: TX_FAULT State
bit 1: RX_LOS State

Micro-Research

Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

367 1
368 1
369 1
370-371 2
372 1
373 1
374 -511

Reserved
Alarm Flags

Alarm Flags cont.

Reserved
Warning Flags

Warning Flags cont.

Document: EVR-MRM-007
Page: 62 of 77

bit 0: Data Ready (Bar)

bit 7: Temp High Alarm

bit 6: Temp Low Alarm

bit 5: VCC High Alarm

bit 4: VCC Low Alarm

bit 3: Tx Bias High Alarm
bit 2: Tx Bias Low Alarm
bit 1: Tx Power High Alarm
bit 0: Tx Power Low Alarm
bit 7: Rx Power High Alarm
bit 6: Rx Power Low Alarm
bit 5 — 0: Reserved

bit 7: Temp High Warning

bit 6: Temp Low Warning

bit 5: VCC High Warning

bit 4: VCC Low Warning

bit 3: Tx Bias High Warning
bit 2: Tx Bias Low Warning
bit 1: Tx Power High Warning
bit 0: Tx Power Low Warning
bit 7: Rx Power High Warning
bit 6: Rx Power Low Warning
bit 5 — 0: Reserved

Reserved/Vendor Specific

Application Programming Interface (API)
A Linux device driver and application interface is provided to setup up the Event Receiver.

Function Reference

int EvrOpen(struct MrfErRegs **pEr, char *device_name);

Description

Parameters struct MrfErRegs **pEr

char *device_name

Return value

int EvrClose(int fd);
Description

Opens the EVR device for access. Simultaneous
accesses are allowed.

EvgOpen returns pointer to EVR registers by
memory mapping the 1/O registers into user
space.

Holds the device name of the EVR, e.g.
/dev/ega3. The device names are set up by the
module_load script of the device driver.

Return file descriptor on success.

Returns -1 on error.

Closes the EVR device after opening by

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 63 of 77

EvrOpen.
Parameters int fd File descriptor returned by EvrOpen
Return value Returns zero on success.

Returns -1 on error.

int EvrEnable(volatile struct MrfErRegs *pEr, int state);

Description
Parameters volatile struct MrfErRegs *pEr
int state

Return value

Enables the EVR and allows reception of
events.

Pointer to memory mapped EVR register
base.

0: disable

1: enable

Returns zero when EVR disabled
Returns non-zero when EVR enabled

int EvrGetEnable(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Retrieves state of the EVR.

Pointer to memory mapped EVR register
base.

Returns zero when EVR disabled
Returns non-zero when EVR enabled

void EvrDumpStatus(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Dump EVR status.

Pointer to memory mapped EVR register
base.

None

int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear);

Description
Parameters volatile struct MrfErRegs *pEr

int clear

Return value

Get/clear EVR link violation status.
Pointer to memory mapped EVR register
base.

0: don’t clear

1: clear status

Returns 0 when no violation detected.
Return non-zero when violation detected.

void EviDumpMapRam(volatile struct MrfErRegs *pEr, int ram);

Description
Parameters volatile struct MrfErRegs *pEr

int ram

Dump EVR mapping RAM.

Pointer to memory mapped EVR register
base.

Number of RAM: O or 1

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 64 of 77

Return value None

int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int
enable);

Description Enable/disable EVR mapping RAM.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int ram Number of RAM: O or 1
int enable 0: disable RAM
1: enable RAM
Return value None

int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);

Description Enable/disable EVR event forwarding.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int ram Number of mapping RAM: 0 or 1
int code Event code to enable/disable event
forwarding
int enable 0: disable event forwarding for code
1: enable event forwarding for code
Return value None

int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int
state);

Description Enables forwarding of enabled event codes.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int state 0: disable forwarding
1: enable forwarding
Return value Returns zero when forwarding disabled

Returns non-zero when forwarding enabled

int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);

Description Retrieves state of event forwarding.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns zero when forwarding disabled

Returns non-zero when forwarding enabled

int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);
Description Enable/disable EVR led event (Front panel

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 65 of 77

led will flash up for enabled event codes).
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
int ram Number of mapping RAM: 0 or 1
int code Event code to enable/disable led event for
int enable 0: disable led event for code
1: enable led event for code
Return value None

int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);

Description Enable/disable storing specified event code
into FIFO.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int ram Number of mapping RAM: 0 or 1
int code Event code to enable/disable
int enable 0: disable storing event code in FIFO
1: enable storing event code in FIFO
Return value None

int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);

Description Enable/disable latching timestamp on
specified event code.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1

int code Event code to enable/disable

int enable 0: disable latching of timestamp on event
code

1: enable latching of timestamp upon
reception of event code
Return value None

int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);

Description Enable/disable stopping of writes to event
log on reception of event code.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1

int code Event code to enable/disable

int enable 0: disable stop log event
1: stop log writes upon reception of event
code

Return value None

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 66 of 77

int EvrClearFIFO(volatile struct MrfErRegs *pEr);

Description Clear EVR Event FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value None.

int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent
*fe);

Description Get one Event from EVR Event FIFO.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
struct FIFOEvent *fe Pointer to structure to place event in.

struct FIFOEvent {
u32 TimestampHigh;
u32 TimestampLow;
u32 EventCode;
b
Return value 0 — Event retrieved successfully
-1 — Event FIFO was empty

int EviEnableLogStopEvent(volatile struct MrfErRegs *pEr, int
enable);

Description Enable/disable stopping of writing to event
log on reception of event codes with STOP
Log mapping bit set.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

int enable 0: disable stop log event

1: stop log writes upon reception of event
codes with STOP log mapping bit set.

Return value Returns zero when stop events disabled
Returns non-zero when stop events enabled

int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);

Description Check if log stop events are enabled.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns zero when stop events disabled

Returns non-zero when stop events enabled

int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable writing to log.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int enable 0: disable writes to log

1: enable writes to log

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 67 of 77

Return value Returns zero when log enabled
Returns non-zero when log stopped.

int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable);

Description Get log state.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns zero when logging enabled

Returns non-zero when logging stopped.

int EvrGetLogStart(volatile struct MrfErRegs *pEr);

Description Get log start position.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns relative address to first log entry in

log ring buffer.

int EvrGetLogEntries(volatile struct MrfErRegs *pEr);

Description Get number of entries in log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns number of entries in log (0 to 512).

void EvrDumpFIFO(volatile struct MrfErRegs *pEr);

Description Dump EVR FIFO on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value None

int EvrClearLog(volatile struct MrfErRegs *pEr);

Description Empty EVR Event Log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value None.

void EviDumpLog(volatile struct MrfErRegs *pEr);

Description Print out full EVR event log on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value None

int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code,
int trig, int set, int clear);

Description Set up pulse generators for event codes.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

int ram
int code
int trig
int set

int clear

Return value

Document: EVR-MRM-007
Page: 68 of 77

Number of mapping RAM: 0 or 1

Event code affected

0: no change

1: Trigger pulse generator from event code
0: no change

1: Set pulse high with this event code

0: no change

1: Pull pulse low with this event code
None

int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int

code, int trig, int set, int clear);

Description
Parameters

int ram
int code
int trig
int set

int clear

Return value

volatile struct MrfErRegs *pEr

Set up pulse generators for event codes.
Pointer to memory mapped EVR register
base.

Number of mapping RAM: 0 or 1

Event code affected

0: no change

1: Don’t trigger pulse generator from this
event code

0: no change

1: Don’t set pulse high with this event code
0: no change

1: Don’t pull pulse low with this event code
None

int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int

presc, int delay, int width);

Description
Parameters volatile struct MrfErRegs *pEr
int pulse
int presc
int delay
int width

Return value

Set pulse generator parameters.

Pointer to memory mapped EVR register
base.

Number of pulse generator 0-9

Prescaler value

Delay Value

Width Value

Returns 0 on success, -1 on error

void EviDumpPulses(volatile struct MrfErRegs *pEr, int pulses);

Description
Parameters

int pulses
Return value

volatile struct MrfErRegs *pEr

Dump EVR pulse generator settings.
Pointer to memory mapped EVR register
base.

Number of pulse generators to dump
None

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 69 of 77

int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int
polarity, int map_reset_ena, int map_set_ena, int map_trigger_ena,
int enable);

Description Set pulse generator properties.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int pulse Number of pulse generator 0-9
int polarity 0: normal polarity

> inverted polarity

- disable reset input
: enable reset input
: disable set input

: enable set input

1
int map_reset_ena 0
1
0
1
int map_trigger_ena 0: disable trigger input
1
0
1
R

int map_set_ena

: enable trigger input

: pulse output disabled

: pulse output enabled

eturns 0 on success, -1 on error

int enable

Return value

int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up universal output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int output Universal Output number
int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

void EviDumpUnivOutMap(volatile struct MrfErRegs *pEr, int
outputs);

Description Dump EVR Universal output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int outputs Number of outputs to dump
Return value None

int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up front panel output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int output Front Panel Output number

int map Signal mapping (see erapi.h for details)

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 70 of 77

Return value Returns 0 on success, -1 on error

void EviDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Front panel output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int outputs Number of outputs to dump
Return value None

int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up Transition board output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int output Transition Board Output number
int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

void EviDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Transition board output
mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int outputs Number of outputs to dump
Return value None

void EvrirgAssignHandler(volatile struct MrfErRegs *pEr, int fd, void
(*handler)(int));

Description Assign EVR interrupt handler.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int fd File descriptor returned by EvrOpen
void (*handler)(int) Pointer to interrupt handler function
Return value None

int EvrirgEnable(volatile struct MrfErRegs *pEr, int mask);

Description Enable EVR interrupts.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int mask Interrupt mask (see erapi.h) for mask bits.

Return value Returns mask read back from EVR.

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 71 of 77

int EvrGetlrqFlags(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Get EVR interrupt flags.

Pointer to memory mapped EVR register
base.

Returns EVR interrupt flags.

int EvrClearlrgFlags(volatile struct MrfErRegs *pEr, int mask);

Description
Parameters volatile struct MrfErRegs *pEr

int mask

Return value

void EvrirgHandled(int fd);
Description

Parameters volatile struct MrfErRegs *pEr

int fd
Return value

Clears EVR interrupt flags.

Pointer to memory mapped EVR register
base.

Interrupt clear mask (see erapi.h) for flag
bits.

Returns flags read back from EVR.

Function to call at the end of interrupt
handler function.

Pointer to memory mapped EVR register
base.

File descriptor returned by EvrOpen
None

int EvrSetPulselrgMap(volatile struct MrfErRegs *pEr, int map);

Description
Parameters volatile struct MrfErRegs *pEr

int map
Return value

Set up interrupt mappings.

Pointer to memory mapped EVR register
base.

Signal mapping (see erapi.h for details)
Returns O on success, -1 on error

int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int

enable);

Description
Parameters volatile struct MrfErRegs *pEr

int dlymod

Enable/disable UNIV-LVPECL-DLY output.
Pointer to memory mapped EVR register
base.

Number of UNIV-LVPECL-DLY module:
cPCI-EVR-230:

0 — module slot UNIV0/1

1 — module slot UNIV2/3

cPCI-EVR-300:

0 — module slot UNIV10/11

1 — module slot UNIV8/9

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 72 of 77
int enable 0 — disable module output
1 — enable module output
Return value Returns 0 on success, -1 on error

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int
dlyO, int dlyl);

Description Enable/disable UNIV-LVPECL-DLY output.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int dlymod Number of UNIV-LVPECL-DLY module:
cPCI-EVR-230:

0 — module slot UNIV0/1
1 — module slot UNIV2/3
cPCI-EVR-300:
0 — module slot UNIV10/11
1 — module slot UNIV8/9
int dly0 Delay value for output even slot # 0/2/8/10:
0 — shortest delay
1023 — longest delay (approx. 9-10 ps/step)
int dlyl Delay value for output odd slot # 1/3/9/11.:
0 — shortest delay
1023 — longest delay (approx. 9-10 ps/step)
Return value Returns 0 on success, -1 on error

int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);

Description Set fractional divider control word which
provides reference frequency for receiver.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int fracdiv Fractional divider control word
Return value Returns control word written

int EvrGetFracDiv(volatile struct MrfErRegs *pEr);

Description Get fractional divider control word which
provides reference frequency for receiver.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Returns control word

int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable data buffer mode. When data
buffer mode is enabled every other
distributed bus byte is reserved for data

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Parameters
int enable

Return value

volatile struct MrfErRegs *pEr

Document: EVR-MRM-007
Page: 73 of 77

transmission thus the distributed bus
bandwidth is halved.

Pointer to memory mapped EVR register
base.

0 — disable data buffer mode

1 — enable data buffer mode

Data buffer status (see Receive Data Buffer
Control and Status Register on page 51 for
bit definitions).

int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);

Description

Parameters

Return value

volatile struct MrfErRegs *pEr

Get data buffer mode. When data buffer
mode is enabled every other distributed bus
byte is reserved for data transmission thus the
distributed bus bandwidth is halved.

Pointer to memory mapped EVR register
base.

Data buffer status (see Receive Data Buffer
Control and Status Register on page 51 for
bit definitions).

int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);

Description

Parameters
int enable

Return value

volatile struct MrfErRegs *pEr

Enable reception of data buffer. After
reception of a data buffer further reception is
disabled until re-enabled by software.
Pointer to memory mapped EVR register
base.

0 — disable data buffer reception.

1 — enable data buffer reception

Data buffer status (see Receive Data Buffer
Control and Status Register on page 51 for
definitions).

int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);

Description

Parameters volatile struct MrfErRegs *pEr
char *dbuf
int size

Return value

Receive data buffer data.

Pointer to memory mapped EVR register
base.

Pointer to local data buffer

Size of dbuf buffer.

Size of received buffer.

-1 on error (no buffer received, local buffer
too small or checksum error)

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 74 of 77

int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);

Description
Parameters volatile struct MrfErRegs *pEr

int div

Return value

Set timestamp counter divider

Pointer to memory mapped EVR register
base.

Timestamp divider value:

0 — count timestamp events (or use DBUS4
as clock)

1 to 65535 — count at event clock/value rate
Return divider value.

int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);

Description
Parameters volatile struct MrfErRegs *pEr

int enable

Return value

Control timestamp counter count from
distributed bus bit 4 (DBUSA4).

Pointer to memory mapped EVR register
base.

0 — disable counting from DBUS4

1 — enable timestamp counting from DBUSA4.
Note: Timestamp counter has to be 0.

int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Get Timestamp Counter value

Pointer to memory mapped EVR register
base.

Timestamp Counter value

int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Get Timestamp Seconds Counter value
Pointer to memory mapped EVR register
base.

Timestamp Seconds Counter value

int EvrGetTimestamplLatch(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Get Timestamp Latch value

Pointer to memory mapped EVR register
base.

Timestamp Latch value

int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Get Timestamp Seconds Latch value
Pointer to memory mapped EVR register

Micro-Research Finland Oy Document: EVR-MRM-007

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland Page: 750f 77

base.
Return value Timestamp Seconds Latch value

int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);

Description Set prescaler divider
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int presc Number of prescaler
int div Prescaler divider value:
1 to 65535 — count at event clock/value rate
Return value Return divider value.

int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level _enable);

Description Set external event code
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int ttlin Number of front panel input: 0, 1
int code Event code to generate on detected edge/level
int edge_enable 0 —disable
1 — enable events on active edge
int level_enable 0 —disable
1 — enable sending out event every 1 us on
active level
Return value 0 — successful
-1 —error

int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level_enable);

Description Set backwards event code
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.
int ttlin Number of front panel input: 0, 1
int code Event code to send out on detected edge/level
int edge_enable 0 —disable
1 — enable events on active edge
int level_enable 0 — disable
1 — enable sending out event every 1 us on
active level
Return value 0 — successful

-1 —error

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 76 of 77

int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin,

int edge);
Description
Parameters volatile struct MrfErRegs *pEr

int ttlin
int edge

Return value

Set external input edge sensitivity
Pointer to memory mapped EVR register
base.

Number of front panel input: 0, 1

0 — detect rising edges

1 — detect falling edges

0 — successful

-1 —error

int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin,

int level);

Description
Parameters volatile struct MrfErRegs *pEr

int ttlin
int level

Return value

Set external input edge sensitivity
Pointer to memory mapped EVR register
base.

Number of front panel input: 0, 1

0 — detect high level (active high)

1 — detect low level (active low)

0 — successful

-1 —error

int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);

Description

Parameters volatile struct MrfErRegs *pEr
int enable

Return value

Enable/disable transmitter data buffer mode.
When data buffer mode is enabled every
other distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Pointer to memory mapped EVR register
base.

0 — disable transmitter data buffer mode

1 — enable transmitter data buffer mode
Transmit data buffer status (see Transmit
Data Buffer Control Register on page 51 for
bit definitions).

int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);

Description

Parameters volatile struct MrfErRegs *pEr

Return value

Get transmit data buffer status. When data
buffer mode is enabled every other
distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Pointer to memory mapped EVR register
base.

Transmit data buffer status (see Transmit
Data Buffer Control Register on page 51 for

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007
Page: 77 of 77

bit definitions).

int EviSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int

size);
Description

Parameters volatile struct MrfErRegs *pEr

char *dbuf
int size

Return value

Get transmit data buffer status. When data
buffer mode is enabled every other
distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Pointer to memory mapped EVR register
base.

Pointer to local data buffer

Size of data in bytes to be transmitted:
4,8,12, ...,2048.

Size of buffer being sent.

-1 on error.

int EvrGetFormFactor(volatile struct MrfErRegs *pEr);

Description
Parameters volatile struct MrfErRegs *pEr

Return value

Get form factor code from EVR.

Pointer to memory mapped EVR register
base.

Form factor. See FPGA Firmware Version
Register on page 52 for details.

