
Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Date: 06 July 2015

Issue: 1

Page: 1 of 77

Author: Jukka Pietarinen

Event Receiver

cPCI-EVR-220, cPCI-EVR-230, PMC-EVR-230,

VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300,

cPCI-EVR-300, PCIe-EVR-300

and PXIe-EVR-300

Technical Reference

Firmware Version 0007

Contents

Safety Summary .. 5

Ground the Equipment. ... 5
Keep away From Live Circuits inside the Equipment. .. 5
Do Not Substitute Parts or Modify Equipment. .. 5

Flammability ... 5
EMI Caution .. 5
CE Notice .. 5
Hardware Installation .. 7

Installing the 3U Boards (cPCI-EVR-2x0 or PXIe-EVR-300) into a Chassis 7
Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300 or cPCI-

EVR-300) into a Chassis ... 7
Installing the PMC-EVR-230 Board onto a Carrier .. 7
Installing the PCIe-EVR-300 Board into a Computer ... 8
Replacing SFP (Small Form Factor Pluggable) Transceivers ... 8

Introduction ... 9
Functional Description .. 9

Event Decoding ... 9
Heartbeat Monitor ... 10
Event FIFO and Timestamp Events... 10
Event Log .. 11
Distributed Bus and Data Transmission .. 11
Pulse Generators .. 11
Prescalers ... 12
Programmable Front Panel, Universal I/O and Backplane Connections 12
Front Panel CML Outputs (VME-EVR-230RF only) ... 13
cPCI-EVRTG-300 GTX Front Panel Outputs ... 15

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Date: 06 July 2015

Issue: 1

Page: 2 of 77

Author: Jukka Pietarinen

Configurable Size Data Buffer .. 20
Interrupt Generation .. 21
External Event Input .. 21

Programmable Reference Clock .. 21
Fractional Synthesiser ... 22

Hardware Configuration Summary ... 22
Connections ... 23

cPCI-EVR-2x0 Front Panel Connections .. 23
VME-EVR-230 and VME-EVR-230RF Front Panel Connections ... 24
VME P2 User I/O Pin Configuration .. 25
PMC-EVR-230 Front Panel Connections ... 27
PMC-EVR-230 Pn4 User I/O Pin Configuration .. 27
cRIO-EVR-300 Front Panel Connections ... 28

cPCI-EVRTG-300 Front Panel Connections .. 29
cPCI-EVR-300 Front Panel Connections.. 29
PCIe-EVR-300 and IFB-300 Connections .. 30

PXIe-EVR-300 Front Panel Connections .. 30
PXIe-EVR-300 Backplane Connections ... 31

VME-EVR-230 and VME-EVR-230RF Network Interface ... 33
Assigning an IP Address to the Module .. 33
Using Telnet to Configure Module .. 33

Boot Configuration (command b) ... 33
Memory dump (command d) ... 34
Memory modify (commands d and m) .. 34
Tuning Delay Line (command t) ... 35
Upgrading IP2022 Microprocessor Software (command u) .. 35
Linux ... 35
Windows .. 35

Upgrading FPGA Configuration File .. 36
Linux ... 36
Windows .. 36
Linux ... 36
Windows .. 36

UDP Remote Programming Protocol .. 37
Read Access (Type 0x01) .. 37
Write Access (Type 0x02) ... 38

cRIO-EVR-300 .. 39
Connections ... 39
Boot Monitor ... 39
Firmware Upgrade (on Linux) ... 40

Programming Details ... 40
VME CR/CSR Support ... 40
Event Receiver Function 0,1 and 2 Registers .. 42

cPCI-EVR-300 and PCIe-EVR-300 Firmware Upgrade ... 42
Register Map ... 44

SFP Module EEPROM and Diagnostics ... 58
Application Programming Interface (API) .. 62

Function Reference .. 62

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Date: 06 July 2015

Issue: 1

Page: 3 of 77

Author: Jukka Pietarinen

int EvrOpen(struct MrfErRegs **pEr, char *device_name); .. 62
int EvrClose(int fd); ... 62
int EvrEnable(volatile struct MrfErRegs *pEr, int state); ... 63
int EvrGetEnable(volatile struct MrfErRegs *pEr); .. 63
void EvrDumpStatus(volatile struct MrfErRegs *pEr); .. 63
int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear); ... 63
void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram); 63
int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int enable); 64
int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 64
int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int state); 64
int EvrGetEventForwarding(volatile struct MrfErRegs *pEr); ... 64
int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 64
int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 65
int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);.......... 65
int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable); 65
int EvrClearFIFO(volatile struct MrfErRegs *pEr);.. 66
int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent *fe); 66
int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int enable); 66
int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr); .. 66
int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable); .. 66
int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable); ... 67
int EvrGetLogStart(volatile struct MrfErRegs *pEr); ... 67
int EvrGetLogEntries(volatile struct MrfErRegs *pEr); ... 67
void EvrDumpFIFO(volatile struct MrfErRegs *pEr); ... 67
int EvrClearLog(volatile struct MrfErRegs *pEr); .. 67
void EvrDumpLog(volatile struct MrfErRegs *pEr);.. 67
int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int

clear); ... 67
int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int

clear); ... 68
int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int presc, int delay, int

width); ... 68
void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses); 68
int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int polarity, int

map_reset_ena, int map_set_ena, int map_trigger_ena, int enable); 69
int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int map); 69
void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int outputs); 69
int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int map); 69
void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs); 70
int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int map); 70
void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs); 70
void EvrIrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void (*handler)(int)); ... 70
int EvrIrqEnable(volatile struct MrfErRegs *pEr, int mask); ... 70
int EvrGetIrqFlags(volatile struct MrfErRegs *pEr); .. 71
int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask); ... 71
void EvrIrqHandled(int fd); ... 71
int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map); 71
int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int enable); 71

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Date: 06 July 2015

Issue: 1

Page: 4 of 77

Author: Jukka Pietarinen

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int dly0, int dly1); .. 72
int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv); .. 72
int EvrGetFracDiv(volatile struct MrfErRegs *pEr); .. 72
int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable); 72
int EvrGetDBufStatus(volatile struct MrfErRegs *pEr); .. 73
int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable); 73
int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size); 73
int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div); 74
int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable); 74
int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr); .. 74
int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr); ... 74
int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr); .. 74
int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr); ... 74
int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div); 75
int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int

level_enable); .. 75
int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int

level_enable); .. 75
int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int edge);............... 76
int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int level); 76
int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable); 76
int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr); .. 76
int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size); 77
int EvrGetFormFactor(volatile struct MrfErRegs *pEr); .. 77

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 5 of 77

Safety Summary
The following general safety precautions must be observed during all phase of operation, service

and maintenance of this equipment. Failure to comply with these precautions could result in

personal injury or damage to the equipment.

Ground the Equipment.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an

electrical ground.

Keep away From Live Circuits inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service

Personnel or other qualified service personnel may remove equipment covers for internal

subassembly or component replacement or any internal adjustment. Service personnel should not

replace components with power cable connected.

Avoid touching areas of integrated circuitry; static discharge can damage the equipment.

Use of an antistatic wrist strap is recommended when installing a system.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment.

Contact Micro-Research Finland for service and repair.

Flammability
All Micro-Research Finland Oy PCBs (Printed Circuit Boards) are manufactured with a

flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution
This equipment generates, uses and can radiate electromagnetic energy. It may cause or be

susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI

protection.

CE Notice
This is a Class A product. In a domestic environment, this product may cause radio interference,

in which case the user may be required to take adequate measures.

This product has been designed to comply with the essential requirement of the following

European Directives:

Electromagnetic Compatibility (EMC) Directive 2004/108/EC, Low-Voltage Directive

2006/95/EC.

Conformity is assessed in accordance to the following standards:

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 6 of 77

EN55022 “Limits and Methods of Measurement of Radio Interference Characteristics of

Information Technology Equipment”; Equipment Class A

EN60950-1 (Safety)

Laser Eye Safety and Equipment Type Testing (Avago AFBR-57R5APZ transceivers):

(IEC) EN60825.1: 1994 + A11 + A2, (IEC) EN60825-2: 1994 + A1, (IEC) EN60950: 1992 + A1

+ A2 + A3 + A4 + A11

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 7 of 77

Hardware Installation

Installing the 3U Boards (cPCI-EVR-2x0 or PXIe-EVR-300) into a
Chassis
Use the following steps to install the module into the chassis:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Remove the filler panel for the slot you want to mount the board into.

3. Unpack the board you want to install from its ESD bag.

4. Open handle by pushing grey levers. The fastening screw in the handle may have turned

during transportation and prevent the handle from opening completely. Please use a

screwdriver and turn screw clockwise if the handle does not open properly.

5. Install the top and bottom edge of the board into the guide rails of the chassis.

6. Slide the board into the slot until resistance is felt.

7. Use handle to insert board into slot. Simultaneously help slightly from the upper area of

the front panel close to the countersunk screw. Do not push the board in using any other

area of the front panel.

8. Make sure handle is in locked position (closed) and grey lever have clicked into the

locked position.

9. Secure the board using the screw in the handle and top of board.

10. Connect appropriate cables to the board.

Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-
EVRTG-300 or cPCI-EVR-300) into a Chassis
Use the following steps to install the module into the chassis:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Remove the filler panel for the slot you want to mount the board into.

3. Unpack the board you want to install from its ESD bag.

4. Open handles by pushing grey levers. Fastening screws in the handles may have turned

during transportation and prevent the handles from opening completely. Please use a

screwdriver and turn screws clockwise if the handles do not open properly.

5. Install the top and bottom edge of the board into the guide rails of the chassis.

6. Slide the board into the slot until resistance is felt.

7. Use handles to insert board into slot. Do not push the board in using the front panel.

8. Make sure handles are in locked position (closed) and grey levers have clicked into the

locked position.

9. Secure the board using the screws in the handles

10. Connect appropriate cables to the board.

Installing the PMC-EVR-230 Board onto a Carrier
Use the following steps to install the module onto the PMC carrier:

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 8 of 77

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Remove the carrier board from its chassis and place on ESD safe working surface.

3. Remove any PMC filler panel from the PMC slot.

4. Note: the PMC-EVR-230 is a Universal voltage board and can be mounted in PMC slots

operating either on +3.3V or +5V PCI I/O voltage. Note however, that on the I/O

connector Pn4 there are both +3.3V and +5V pins.

5. Unpack the PMC-EVR-230 from its ESD bag.

6. Carefully align PMC-EVR-230 front panel with the PMC carrier’s front panel hole.

7. Make sure PMC connectors are aligned and carefully push the board onto its carrier.

8. Secure the board from the bottom side of carrier using four M2.5 screws.

9. Connect appropriate cables to the board.

Installing the PCIe-EVR-300 Board into a Computer
Use the following steps to install the module into a computer:

1. Power down your computer

2. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

3. Remove any panels to get access to the PCI Express slot.

4. Remove any PCIe slot filler panel from the slot you want to install the EVR.

5. Unpack the PCIe-EVR-300 from its ESD bag.

6. Carefully align the PCIe-EVR-300 into the PCIe slot. Make sure both the front panel and

PCIe connector are aligned and carefully push the board into its slot.

7. Secure the board front panel with a screw.

8. Connect appropriate cables to the board.

9. Remount any chassis panels removed during the process.

Replacing SFP (Small Form Factor Pluggable) Transceivers
SFP Transceivers are hot-pluggable and replaceable during operation. To replace a SFP

transceiver use the following steps:

1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical

ground. The ESD strip must be secured to your wrist and to ground throughout the

procedure.

2. Unplug any fibres connected to the transceiver you want to replace.

3. Pull out the transceiver using the transceiver handle that folds down.

4. Plug in a new transceiver.

5. Reconnect fibres.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 9 of 77

Introduction
Event Receivers decode timing events and signals from an optical event stream transmitted by an

Event Generator. Events and signals are received at predefined rate the event clock that is usually

divided down from an accelerators main RF reference. The event receivers lock to the phase

event clock of the Event Generator and are thus phase locked to the RF reference. Event

Receivers convert event codes transmitted by an Event Generator to hardware outputs. They can

also generate software interrupts and store the event codes with globally distributed timestamps

into FIFO memory to be read by a CPU.

Functional Description
After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit

distributed bus data and 8-bit event codes. The distributed bus may be configured to share its

bandwidth with time deterministic data transmission.

Event Decoding

The Event Receiver provides two mapping RAMs of 256 × 128 bits. Only one of the RAMs can

be active at a time, however both RAMs may be modified at any time. The event code is applied

to the address lines of the active mapping RAM. The 128-bit data programmed into a specific

memory location pointed to by the event code determines what actions will be taken.

Event code Offset Internal functions Pulse Triggers ‘Set’ Pulse ‘Reset’ Pulse

0x00 0x0000 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

0x01 0x0010 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

0x02 0x0020 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

… … … … … …

0xFF 0x0FF0 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

There are 32 bits reserved for internal functions which are by default mapped to the event codes

shown in table . The remaining 96 bits control internal pulse generators. For each pulse generator

there is one bit to trigger the pulse generator, one bit to set the pulse generator output and one bit

to clear the pulse generator output.

Map bit Default event code Function

127 n/a Save event in FIFO

126 n/a Latch timestamp

125 n/a Led event

124 n/a Forward event from RX to TX

123 0x79 Stop event log

122 n/a Log event

102 to 121 n/a (Reserved)

101 0x7a Hearbeat

100 0x7b Reset Prescalers

99 0x7d Timestamp reset event

98 0x7c Timestamp clock event

97 0x71 Seconds shift register ‘1’

96 0x70 Seconds shift register ‘0’

80 to 95 (Reserved)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 10 of 77

79 Trigger pulse generator 15

… …

64 Trigger pulse generator 0

48 to 63 (Reserved)

47 Set pulse generator 15 output high

… …

32 Set pulse generator 0 output high

16 to 31 (Reserved)

15 Reset pulse generator 15 output low

… …

0 Reset pulse generator 0 output low

Heartbeat Monitor

A heartbeat monitor is provided to receive heartbeat events. Event code $7A is by default set up

to reset the heartbeat counter. If no heartbeat event is received the counter times out (approx. 1.6

s) and a heartbeat flag is set. The Event Receiver may be programmed to generate a heartbeat

interrupt.

Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and

performed actions. The time stamping system consists of a 32-bit timestamp event counter and a

32-bit seconds counter. The timestamp event counter either counts received timestamp counter

clock events or runs freely with a clock derived from the event clock. The event counter is also

able to run on a clock provided on a distributed bus bit.

The event counter clock source is determined by the prescaler control register. The timestamp

event counter is cleared at the next event counter rising clock edge after receiving a timestamp

event counter reset event. The seconds counter is updated serially by loading zeros and ones (see

mapping register bits) into a shift register MSB first. The seconds register is updated from the

shift register at the same time the timestamp event counter is reset.

The timestamp event counter and seconds counter contents may be latched into a timestamp latch.

Latching is determined by the active event map RAM and may be enabled for any event code.

An event FIFO memory is implemented to store selected event codes with attached timing

information. The 80-bit wide FIFO can hold up to 511 events. The recorded event is stored along

with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the time of

reception. The event FIFO as well as the timestamp counter and latch are accessible by software.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 11 of 77

E vent FIFO

E vent FIFO write
MA P 15

1

0

32-bit Timestamp E vent Counter

32-bit Timestamp Latch

code
event

prescaler = 0

32-bit S econds

32-bit S econds

32-bit S econds

event

event

event

32-bit Timestamp

32-bit Timestamp

32-bit Timestamp

32-bit S econds Latch
latch timestamp

MA P 14

load reset

latch latch

32-bit S econds Register

0

1

TS event counter clk
event code $7C

32-bit S econds S hift Register

load bit '0'
event code $70

load bit '1'
event code $71

dbus_ena

bus bit 4
distributed

sync.
TS event counter reset

event code $7D

event clock

reset

16-bit prescaler

Figure 1: Event FIFO and Timestamping

Event Log

Up to 512 events with timestamping information can be stored in the event log. The log is

implemented as a ring buffer and is accessible as a memory region. Logging events can be

stopped by an event or software.

Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with the event clock rate

over the fibre optic transmission media. The distributed bus signals may be output on

programmable front panel outputs.

The distributed bus bandwidth may be shared by transmission of a configurable size data buffer

to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The

remaining bandwidth is reserved for transmitting data with a speed up to 50 Mbytes/s (event

clock rate divide by two).

Pulse Generators

The structure of the pulse generation logic is shown in Figure 2. Three signals from the mapping

RAM control the output of the pulse: trigger, ‘set’ pulse and ‘reset’ pulse. A trigger causes the

delay counter to start counting, when the end-of-count is reached the output pulse changes to the

‘set’ state and the width counter starts counting. At the end of the width count the output pulse is

cleared. The mapping RAM signal ‘set’ and ‘reset’ cause the output to change state immediately

without any delay.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 12 of 77

W idth C ounter

tri g g e r

c o u n t e n a b l e

o u p u t

p o l a ri ty

P OLx

P ulse Output
to mapping logic

D elay C ounter

re s e t tri g g e r

c o u n t e n a b l ee n a b l e o u t

s e t

c l e a r

s e t

Map R A M
'set' pulse x

Map R A M
trigger x

event clk

P rescaler
(optional)

Master enable

S W enable

c l e a r

Map R A M
'reset' pulse x

e n a

Figure 2: Pulse Output Structure

32 bit registers are reserved for both counters and the prescaler, however, the prescaler is not

necessarily implemented for all channels and may be hard coded to 1 in case the prescaler is

omitted. Software may write 0xFFFFFFFF to these registers and read out the actual width or

hard-coded value of the register. For example if the width counter is limited to 16 bits a read will

return 0x0000FFFF after a write of 0xFFFFFFFF.

Prescalers

The Event Receiver provides a number of programmable prescalers. The frequencies are

programmable and are derived from the event clock. A special event code reset prescalers $7B

causes the prescalers to be synchronously reset, so the frequency outputs will be in same phase

across all event receivers.

Programmable Front Panel, Universal I/O and Backplane Connections

All outputs are programmable: each pulse generator output, prescaler and distributed bus bit can

be mapped to any output. The mapping is shown in table below.

Table 1: Signal mapping IDs

Mapping ID Signal

0 to n-1 Pulse generator output (number n of pulse generators depends on HW and

firmware version)

n to 31 (Reserved)

32 Distributed bus bit 0 (DBUS0)

… …

39 Distributed bus bit 7 (DBUS7)

40 Prescaler 0

41 Prescaler 1

42 Prescaler 2

43 to 58 (Reserved)

59 Event clock output (only on PXIe-EVR-300)

60 Event clock output with 180° phase shift (only on PXIe-EVR-300)

61 Tri-state output (for PCIe-EVR-300/PXIe-EVR-300 with input module

populated in Interface Module’s Universal I/O slot, and PXIe-EVR-300

bidirectional PXI trigger signals)

62 Force output high (logic 1)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 13 of 77

63 Force output low (logic 0)

Front Panel TTL Outputs (VME-EVR-230 and VME-EVR-230RF)

The VME-EVR-230 provides eight programmable TTL outputs in the front panel TTL0 to TTL7

whereas the number of TTL level outputs in the VME-EVR-230RF is limited to four (TTL0 to

TTL3). These outputs are capable of driving a TTL level signal into a 50 ohm ground terminated

coaxial cable. The source for these signals are determined by mapping registers which allow

selecting different types of pulse outputs, prescalers and distributed bus signals.

Front Panel Universal I/O Slots

Universal I/O slots provide different types of output with exchangeable Universal I/O modules.

Each module provides two outputs e.g. two TTL output, two NIM output or two optical outputs.

The source for these outputs is selected with mapping registers.

Two front panel Universal I/O slots have extra I/O pins to allow controlling the delay of UNIV-

LVPECL-DLY modules. For the cPCI-EVR-300 the two slots that allow UNIV-LVPECL-DLY

modules are UNIV8/9 and UNIV10/11.

An optional side-by-side front panel module for the cPCI-EVR-220 and cPCI-EVR-230 offers

three additional Universal I/O slots with a maximum of six outputs. The cPCI-EVR-300 has six

Universal I/O slots.

Front Panel CML Outputs (VME-EVR-230RF only)

Front Panel CML Outputs provide low jitter differential signals with special outputs. The outputs

can work in different configurations: pulse mode, pattern mode and frequency mode.

CML Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping

registers, however, the output logic monitors the state of this signal and distinguishes between

state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 20 bit

pattern is sent out with a bit rate of 20 times the event clock rate.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 14 of 77

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

00

01

10

11

Pattern Register for state 'low (00)'

Pattern Register for state 'falling edge (10)'

Pattern Register for state 'rising edge (01)'

Pattern Register for state 'high (11)'

CML differential

output LEMO-EPY

S
h

ift
 R

e
g

is
te

r
O

p
e

ra
tin

g
 a

t 2
0

 x
 E

ve
n

t C
lo

ck
 R

a
te

Event Clock

Mapping Multiplexer

Pulse Output

Figure 3: Block Diagram of Programmable CML Outputs

 When the source for a CML output is low and was low one event clock cycle earlier

(state low), the CML output repeats the 20 bit pattern stored in pattern_00 register.

 When the source for a CML output is high and was low one event clock cycle earlier

(state rising), the CML output sends out the 20 bit pattern stored in pattern_01 register.

 When the source for a CML output is high and was high one event clock cycle earlier

(state high), the CML output repeats the 20 bit pattern stored in pattern_11 register.

 When the source for a CML output is low and was high one event clock cycle earlier

(state falling), the CML output sends out the 20 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single CML output bit is 400 ps. These

outputs allow for producing fine grained adjustable output pulses and clock frequencies.

CML Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of

1/20th part of the event clock cycle i.e. 400 ps step with an event clock of 125 MHz. There are

some limitations, however:

 Clock high time and clock low time must be ≥ 20/20th event clock period steps

 Clock high time and clock low time must be < 65536/20th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.

When a rising edge of the mapped output signal is detected the frequency generator takes its

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 15 of 77

output value from the trigger level bit and the counter value from the trigger position register.

Thus one can adjust the phase of the synchronized clock in 1/20th steps of the event clock period.

Usage example: Australian synchrotron booster clock. We have following:

 Event clock of 499.654 MHz/4

 Storage ring 360 RF buckets

 Booster 217 RF buckets

 Booster and storage ring coincidence clock on DBUS7

The CML outputs are running at a rate of 20 times the event clock or 499.654 MHz * 5, thus the

booster revolution period is 217 * 5 CML bit periods. In CML frequency mode we can now set

the output period (pulse high time + pulse low time) to 217 * 5 = 1085 bits. For approximately

50% duty cycle we set the pulse high time to 542 (0x21e) and the pulse low time to 543 (0x21f).

The actual register settings required are:

Write 0x00000011 to CML Control register (CMLxENA)

Write 0x021e to CML High Period Count register (CMLxHP)

Write 0x021f to CML Low Period Count register (CMLxLP)

We also need to set the trigger from DBUS7 by setting up register FPOutMapx.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by

bit CMLTL in the CML Control register and the trigger position also in the CML Control

register.

CML Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

 The pattern length is a multiple of 20 bits, where each bit is 1/20th of the event clock

period

 Maximum length of the arbitrary pattern is 20 × 2048 bits

 A pattern can be triggered from any pulse generator, distributed bus bit etc. When

triggered the pattern generator starts sending 20 bit words from the pattern memory

sequentially starting from position 0. This goes on until the pattern length set by the

samples register has been reached.

 If the pattern generator is in recycle mode the pattern continues immediately from

position 0 of the pattern memory.

 If the pattern generator is in single pattern mode, the pattern stops and the 20 bit word

from the last position of the pattern memory (2047) is sent out until the pattern generator

is triggered again.

cPCI-EVRTG-300 GTX Front Panel Outputs

All eight cPCI-EVRTG-300 front panel output are similar to the CML outputs on the VME-EVR-

230RF. The GTX Outputs provide low jitter differential signals with special outputs. The outputs

can work in different configurations: pulse mode, pattern mode and frequency mode. The

difference compared to the CML output of the VME-EVR-230RF is that instead of 20 bits per

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 16 of 77

event clock cycle the GTX outputs have 40 bits per event clock cycle doubling the resolution to

200 ps/bit at an event clock of 125 MHz.

In addition to the higher bit rate each of the GTX outputs has a programmable delay line between

the FPGA and the actual output which allows a delay range of 1024 steps of ~9 ps. The delay

value is set with registers GTX0Dly to GTX7Dly.

GTX Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping

registers, however, the output logic monitors the state of this signal and distinguishes between

state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 40 bit

pattern is sent out with a bit rate of 40 times the event clock rate.

7 6 5 4 3 2 1 03 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2

7 6 5 4 3 2 1 03 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2

7 6 5 4 3 2 1 03 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2

7
6

5
4

3
2

1
0

39
38

37
36

35
34

33
32

7 6 5 4 3 2 1 03 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2

0 0

0 1

1 0

1 1

P attern Register for state ' low (00)'

P attern Register for state 'falling edge (10)'

P attern Register for state 'rising edge (01)'

P attern Register for state 'high (11)'

E vent Clock

Mapping Multiplexer

P ulse Output

S
h
if
t
R

e
g
is

te
r
O

p
e
ra

ti
n
g
 a

t
4
0
 x

 E
v
e
n
t
C

lo
c
k
 R

a
te

GTX output: UNIV I/O,

LV P E CL, optical S FP

Figure 4: Block Diagram of Programmable GTX Outputs

 When the source for a GTX output is low and was low one event clock cycle earlier (state

low), the GTX output repeats the 40 bit pattern stored in pattern_00 register.

 When the source for a GTX output is high and was low one event clock cycle earlier

(state rising), the GTX output sends out the 40 bit pattern stored in pattern_01 register.

 When the source for a GTX output is high and was high one event clock cycle earlier

(state high), the GTX output repeats the 40 bit pattern stored in pattern_11 register.

 When the source for a GTX output is low and was high one event clock cycle earlier

(state falling), the GTX output sends out the 40 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single GTX output bit is 200 ps. These

outputs allow for producing fine grained adjustable output pulses and clock frequencies.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 17 of 77

GTX Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of

1/40th part of the event clock cycle i.e. 200 ps step with an event clock of 125 MHz. There are

some limitations, however:

 Clock high time and clock low time must be ≥ 40/40th event clock period steps

 Clock high time and clock low time must be < 65536/40th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.

When a rising edge of the mapped output signal is detected the frequency generator takes its

output value from the trigger level bit and the counter value from the trigger position register.

Thus one can adjust the phase of the synchronized clock in 1/40th steps of the event clock period.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by

bit CMLTL in the CML Control register and the trigger position also in the CML Control

register.

GTX Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

 The pattern length is a multiple of 40 bits, where each bit is 1/40th of the event clock

period

 Maximum length of the arbitrary pattern is 40 × 2048 bits

 A pattern can be triggered from any pulse generator, distributed bus bit etc. When

triggered the pattern generator starts sending 40 bit words from the pattern memory

sequentially starting from position 0. This goes on until the pattern length set by the

samples register has been reached.

 If the pattern generator is in recycle mode the pattern continues immediately from

position 0 of the pattern memory.

 If the pattern generator is in single pattern mode, the pattern stops and the 40 bit word

from the last position of the pattern memory (2047) is sent out until the pattern generator

is triggered again.

GTX GUN-TX-203 Mode

The cPCI-EVRTG-300 has two SFP outputs CH1 (GTX6) and CH2 (GTX7) that can generate a

modulated signal that can be received by the Electron Gun trigger receiver GUN-RC-203. The

GUN-TX-203 Mode has been designed to operate with a RF bucket clock of 499.654 MHz and

event clock of ¼ of the RF clock.

To enable the GUN-TX-203 Mode one has to set bits GTX2MD and CMLENA in the CML/GTX

Control register for the given GTX output. The pulse output delay can be changed in quarters of

the event clock period by the GTXPH1:0 bits. For finer delay tuning the GTX delay lines may be

adjusted (registers GTX6Dly for CH1 and GTX7Dly for CH2).

The two SFP outputs share an external inhibit signal that only allows triggers when the external

inhibit signal is in a given state. To use the external inhibit function a UNIV-TTLIN-IL module

has to be mounted in Universal I/O slot UNIV0/1. To allow output pulses the inhibit signal at

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 18 of 77

UNIV0 has to be pulled low. In case of an open circuit output pulses are inhibited. It is possible

to override the inhibit input with a control register bit.

The GUN-TX-203 mode can be used in conjunction with the GTX pulse mode.

Pulse Mode Example

This example shows how to configure CH1 & CH2 using GUN-RC-203 to output a pulse on a

received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the

following conditions:

 Event clock rate is set to 124.9135 MHz

 EVG is periodically sending out event code 0x01

 Register contents of EVR are power up default values

m 7a000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200 Enable mapping RAM 1
m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag
m 7a000202 0003 Enable pulse generator 0, enable event trigger
m 7a00020e 0064 Set pulse generator 0 width to 100 cycles
m 7a000212 0003 Enable pulse generator 1, enable event trigger
m 7a00021a 0064 Set pulse delay to 100 cycles
m 7a00021e 0064 Set pulse generator 1 width to 100 cycles
m 7a000408 0000 Map pulse generator 0 output to LVPECL 0
m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1
m 7a00040c 0000 Map pulse generator 0 output to CH1
m 7a00040e 0001 Map pulse generator 1 output to CH2
m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1
m 7a000692 1 Enable pulse mode for GTX4 / LVPECL 0
m 7a0006b2 1 Enable pulse mode for GTX5 / LVPECL 1
m 7a0006d2 0401 Enable pulse mode & GUN-TX-203 mode for GTX6 / CH1
m 7a0006f2 0401 Enable pulse mode & GUN-TX-203 mode for GTX7 / CH2

GTX GUN-RC-300 Mode

The two front panel SFP outputs CH1 (GTX6) and CH2 (GTX7) can be configured to generate a

modulated signal that can be received by an Electron Gun trigger receiver GUN-RC-300. The

difference between the GUN-RC-203 and GUN-RC-300 is that the latter is capable of generating

pulse trains with 2 ns resolution that is it allows triggering the gun bunch by bunch.

Pulse Mode Example

This example shows how to configure CH1 an d CH2 to output a pulse on a received event. We

use the telnet interface to the cPCI-EVRTG-300. This example assumes the following conditions:

 Event clock rate is set to 124.9135 MHz

 EVG is periodically sending out event code 0x01

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 19 of 77

 Register contents of EVR are power up default values

m 7a000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200 Enable mapping RAM 1
m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag
m 7a000202 0003 Enable pulse generator 0, enable event trigger
m 7a00020e 0064 Set pulse generator 0 width to 100 cycles
m 7a000212 0003 Enable pulse generator 1, enable event trigger
m 7a00021a 0064 Set pulse delay to 100 cycles
m 7a00021e 0064 Set pulse generator 1 width to 100 cycles
m 7a000408 0000 Map pulse generator 0 output to LVPECL 0 (for reference only)
m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1 (for reference only)
m 7a00040c 0000 Map pulse generator 0 output to CH1
m 7a00040e 0001 Map pulse generator 1 output to CH2
m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1
m 7a000692 1 Enable pulse mode for GTX4 / LVPECL 0
m 7a0006b2 1 Enable pulse mode for GTX5 / LVPECL 1
m 7a0006d2 0801 Enable pulse mode & GUN-TX-300 mode for GTX6 / CH1
m 7a0006f2 0801 Enable pulse mode & GUN-TX-300 mode for GTX7 / CH2

Pattern Mode Example

This example shows how to configure CH1 and CH2 to output an arbitrary pulse pattern on a

received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the

following conditions:

 Event clock rate is set to 124.9135 MHz

 EVG is periodically sending out event code 0x01

 Register contents of EVR are power up default values

m 7a000004 8900 Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200 Enable mapping RAM 1
m 7a00000a 0015 Clear HW IRQ flag, heartbeat flag, violation flag
m 7a000202 0003 Enable pulse generator 0, enable event trigger
m 7a00020e 0064 Set pulse generator 0 width to 100 cycles
m 7a000212 0003 Enable pulse generator 1, enable event trigger
m 7a00021a 0064 Set pulse delay to 100 cycles
m 7a00021e 0064 Set pulse generator 1 width to 100 cycles
m 7a000408 0000 Map pulse generator 0 output to LVPECL 0 (for reference only)
m 7a00040a 0001 Map pulse generator 1 output to LVPECL 1 (for reference only)
m 7a00040c 0000 Map pulse generator 0 output to CH1
m 7a00040e 0001 Map pulse generator 1 output to CH2
m 7a004016 3 Map event code 0x01 to trigger pulse generator 0 & 1
m 7a000692 1 Enable pulse mode for GTX4 / LVPECL 0
m 7a0006b2 1 Enable pulse mode for GTX5 / LVPECL 1
m 7a0006da 0100 Set pattern length to 256 event clock cycles
m 7a0006d2 0821 Enable pattern mode & GUN-TX-300 mode for GTX6 / CH1

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 20 of 77

m 7a0006fa 0100 Set pattern length to 256 event clock cycles
m 7a0006f2 0821 Enable pattern mode & GUN-TX-300 mode for GTX7 / CH2

The pattern is stored in the GTX pattern memory GTX6MEM for CH1 and GTX7MEM for CH2.

The pattern memory has a resolution of 40 bits per event clock cycle, however, the GUN-RC-300

is only capable of reproducing pulses at rate of four 1 ns pulses every event clock cycle. The 40

bits of the pattern memory can be considered as four 10 bit blocks and each of these blocks may

contain the following bit combinations only:

 0000000000

 1111100000

 1111111111

Note that the pattern memory contains pre-programmed patterns for the GUN-TX-203 mode so

the memory is not all-zero after power-up. Also if the pattern memory is modified the GUN-TX-

203 mode could stop working.

Common GUN-TX Mode Considerations

 The GTX outputs should not be enable before the EVG/EVR link is up

 Disconnecting any fibre connection between EVG/EVR or EVR/GUN-RC can lead to a

spurious pulses at the GUN-RC

 A lost EVG RF reference can cause spurious pulses at the GUN-RC

 When the Fine Delay value of a GUN-TX channels is changed the output is first forced

low to prevent spurious triggers from glitches in the delay chip

Configurable Size Data Buffer

Some applications require deterministic data transmission. The configurable size data buffer

provides a configurable size buffer that may be transmitted over the event system link. The buffer

size is configured in the Event Generator to up to 2 kbytes. The Event Receiver is able to receive

buffers of any size from 4 bytes to 2 kbytes in four byte (long word) increments.

Data reception is enabled by changing the distributed bus mode for data transmission (mode = 1

in Data Buffer Control Register). This halves the distributed bus update rate. Before a data buffer

can be received the data buffer receiver has to be enabled (write enable = 1 in control register).

This clears the checksum error flag and sets the rx_enable flag. When a data buffer has been

received the rx_enable flag is cleared and rx_complete flag is set. If the received and computed

checksums do not match the checksum error flag is set.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 21 of 77

2 kbyte

buffer
data transmit
dual porteddistributed

bus interface
memory
access

comparison
checksum

reception
engine and

enable
disable
bufsize_words
rx_enable
rx_complete
checksum_error

Figure 5: Data Receive Buffer

The size of the data buffer transfer can be read from the control register. An interrupt may be

generated after reception of a data buffer.

Interrupt Generation

The Event Receiver has multiple interrupt sources which all have their own enable and flag bits.

The following events may be programmed to generate an interrupt:

 Receiver link state change

 Receiver violation: bit error or the loss of signal.

 Lost heartbeat: heartbeat monitor timeout.

 Write operation of an event to the event FIFO.

 Event FIFO is full.

 Data Buffer reception complete.

In addition to the events listed above an interrupt can be generated from one of the pulse

generator outputs, distributed bus bits or prescalers. The pulse interrupt can be mapped in a

similar way as the front panel outputs.

External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal

event. This event will be handled as any other received event.

Programmable Reference Clock
The event receiver requires a reference clock to be able to synchronise on the incoming event

stream sent by the event generator. For flexibility a programmable reference clock is provided to

allow the use of the equipment in various applications with varying frequency requirements.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 22 of 77

Fractional Synthesiser

The clock reference for the event receiver is generated on-board the event receiver using a

fractional synthesiser. A Micrel (http://www.micrel.com) SY87739L Protocol Transparent

Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists

programming bit patterns for a few frequencies.

Event Rate Configuration Bit

Pattern

Reference Output Precision

(theoretical)

499.8 MHz/5

= 99.96 MHz

0x025B41ED 99.956 MHz -40 ppm

50 MHz 0x009743AD 50.0 MHz 0

499.8 MHz/10

= 49.98 MHz

0x025B43AD 49.978 MHz -40 ppm

The event receiver reference clock is required to be in ±100 ppm range of the event generator

event clock.

Hardware Configuration Summary
 cPCI-

EVR-230

PMC-

EVR-230

VME-

EVR-230

VME-

EVR-

230RF

cPCI-

EVRTG-

300

Pulse

Generators

10 10 16 16 10

FP TTL

inputs

2 1 2 2 0

FP TTL

outputs

0 3 8 4 0

FP CML

outputs

0 0 0 3 81

FP UNIV

I/O / slots

4 / 2 0 / 0 4 / 2 4 / 2 4 / 2

UNIV GPIO

pins / slots

8 / 2 0 / 0 8 / 2 8 / 2 8 / 2

TB Outputs 0 10 16 16 0

TB Inputs 0 0 16 16 0

Prescalers 3 x 32 bit 3 x 16 bit 3 x 32 bit 3 x 16 bit 3 x 32 bit

P
u

ls
e

G
en

er
at

o
r

 P
re

sc
al

er
,

D
el

ay
 a

n
d

P
u

ls
e

W
id

th
 R

an
g

e
(b

it
s)

0 16, 32, 32 16, 32, 32 16, 32, 24 8, 32, 16 16, 32, 32

1 16, 32, 32 16, 32, 32 16, 32, 24 8, 32, 16 16, 32, 32

2 16, 32, 32 8, 32, 16 16, 32, 24 8, 32, 16 16, 32, 32

3 16, 32, 32 8, 32, 16 16, 32, 24 8, 32, 16 16, 32, 32

4 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

5 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

6 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

7 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

8 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

9 0, 32, 16 0, 32, 16 0, 32, 24 0, 32, 16 0, 32, 16

10 n/a n/a 0, 32, 24 0, 32, 16 n/a

11 n/a n/a 0, 32, 24 0, 32, 16 n/a

12 n/a n/a 0, 32, 24 0, 32, 16 n/a

13 n/a n/a 0, 32, 24 0, 32, 16 n/a

1 From the software point of view all outputs show up as GTX/CML outputs. Physically there are four

UNIV Outputs (two slots), two LVPECL outputs and two SFP outputs

http://www.micrel.com/

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 23 of 77

14 n/a n/a 0, 32, 24 0, 32, 16 n/a

15 n/a n/a 0, 32, 24 0, 32, 16 n/a

 cPCI-

EVR-330

cRIO-

EVR-300

PCIe-EVR-

300

PXIe-EVR-

300I

PXIe-EVR-

300U

Pulse

Generators

14 8 16 16 16

FP TTL

inputs

2 0 0 2 2

FP TTL

outputs

0 0 0 0 0

FP CML

outputs

0 0 0 0 0

FP UNIV

I/O / slots

12/ 6 42 / 0 16 / 83 16 / 84 4 / 2

UNIV GPIO

pins / slots

8 / 2 0 / 0 0 / 0 0 / 0 8 / 2

TB Outputs 0 0 0 58 58

TB Inputs 0 0 0 42 42

Prescalers 3 x 32 bit 3 x 16 bit 3 x 16 bit 4 x 32 bit 4 x 32 bit

P
u

ls
e

G
en

er
at

o
r

 P
re

sc
al

er
,

D
el

ay
 a

n
d

 P
u

ls
e

W
id

th
 R

an
g

e
(b

it
s)

0 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32

1 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32

2 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32

3 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32 16, 32, 32

4 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16

5 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16

6 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16

7 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16 0, 32, 16

8 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

9 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

10 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

11 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

12 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

13 0, 32, 16 n/a 0, 32, 16 0, 32, 16 0, 32, 16

14 n/a n/a 0, 32, 16 0, 32, 16 0, 32, 16

15 n/a n/a 0, 32, 16 0, 32, 16 0, 32, 16

Connections

cPCI-EVR-2x0 Front Panel Connections
The front panel of the Event Receiver and its optional side-by-side module is shown in Figure 6

and Figure 7.

2 From the software point of view the cRIO outputs show up as UNIV outputs. Physically they are available

on the DSUB connector.
3 Universal I/O is available on the external I/O box
4 Universal I/O is available on the external I/O box, which from the software point of view are ports 4 to 19

(ports 0 to 3 are physically present on the PCB however, unavailable for mounting a Universal I/O module)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 24 of 77

IN
1

TX RX

IN
0

UNIV0 UNIV1 UNIV2 UNIV3

L
N

K

E
V

T

O
F

F

M
ic

ro
-R

e
s

e
a

rc
h

P
X

I-
E

V
R

-2
2

0
TTL

Figure 6: Event Receiver Front Panel

UNIV4 UNIV5 UNIV6 UNIV7M
ic

ro
-R

e
s

e
a

rc
h

P
X

I-
E

V
S

B
S

-2
2

0

UNIV8 UNIV9

Figure 7: Optional Side-by-side Module Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

LNK Red/Green

Led

 Red: receiver violation detected

Green: RX link OK, violation flag

cleared

EVT Red/Green

Led

 Green: link OK, flashes when event

code received

Red: Flashes on led event

TX LC optical Transmit Optical Output (TX)

RX LC optical Receiver Optical Input (RX)

TTL IN0 LEMO-EPY TTL External Event Input

TTL IN1 LEMO-EPY TTL External Event Input

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

UNIV4/5 Universal slot Universal Output 4/6

UNIV6/7 Universal slot Universal Output 6/7

UNIV8/9 Universal slot Universal Output 8/9

VME-EVR-230 and VME-EVR-230RF Front Panel Connections

The front panel of the VME-EVR-230 Event Receiver is shown in Figure 6 and VME-EVR-

230RF in Figure 9: VME-EVR-230RF Event Receiver Front PanelFigure 9 respectively.

O
U

T
3

O
U

T
2

O
U

T
6

O
U

T
7

O
U

T
4

O
U

T
5

O
U

T
0

O
U

T
1

IN
1

M
ic

ro
R

e
s
e

a
rc

h

OFF

FAIL

ENA

RX
LINK

OUT ERR ACT

EVENT
IN

RX
FAIL RUN

10baseT 10/100 TX RX TTLTTL TTL TTL

IN
0

VME-EVR-230 TTL COMUNIV0 UNIV1 UNIV2 UNIV3

Figure 8: VME-EVR-230 Event Receiver Front Panel

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 25 of 77

O
U

T
3

O
U

T
2

O
U

T
5

+
O

U
T

5
-

O
U

T
4

+
O

U
T

4
-

O
U

T
0

O
U

T
1

IN
1

OFF

FAIL

ENA

RX
LINK

OUT ERR ACT

EVENT
IN

RX
FAIL RUN

10baseT 10/100 TX RX TTLTTL TTL CML

IN
0

VME-EVR-230RF CML COM

O
U

T
6

+
O

U
T

6
-

CML UNIV0 UNIV1 UNIV2 UNIV3
Figure 9: VME-EVR-230RF Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

FAIL Red Led Module Failure/Interlock active

OFF Blue Led Module not Configured/Powered

Down

RX LINK Green Led Receiver Link Signal OK

ENA Green Led Event Receiver Enabled

EVENT IN Yellow Led Incoming Event (RX)

EVENT OUT Yellow Led Active HW output

RX FAIL Red Led Receiver Violation

ERR Red Led SY87739L reference not locked

RUN Green Led Ubicom IP2022 software running

ACT Yellow Led Ubicom IP2022 telnet connection

active

10baseT with LEDs RJ45

green Led

amber Led

10baseT 10baseT Ethernet Connection

link established

link activity

10/100 RJ45 (reserved)

TX LC optical Transmit Optical Output (TX)

RX LC optical Receiver Optical Input (RX)

TTL IN0 LEMO-EPY TTL External Event Input

TTL IN1 LEMO-EPY TTL External Event Input

TTL OUT0 LEMO-EPY TTL Programmable TTL Output 0

TTL OUT1 LEMO-EPY TTL Programmable TTL Output 1

TTL OUT2 LEMO-EPY TTL Programmable TTL Output 2

TTL OUT3 LEMO-EPY TTL Programmable TTL Output 3

TTL OUT4 LEMO-EPY TTL Programmable TTL Output 45

TTL OUT5 LEMO-EPY TTL Programmable TTL Output 5

TTL OUT6 LEMO-EPY TTL Programmable TTL Output 6

TTL OUT7 LEMO-EPY TTL Programmable TTL Output 7

CML OUT4 LEMO-EPY CML Programmable CML Output 46

CML OUT5 LEMO-EPY CML Programmable CML Output 5

CML OUT6 LEMO-EPY CML Programmable CML Output 6

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

COM RJ45 RS232 (reserved)

VME P2 User I/O Pin Configuration
The following table lists the connections to the VME P2 User I/O Pins.

5 TTL outputs TTL4-TTL7 available on VME-EVR-230 only
6 CML outputs available on VME-EVR-230RF only

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 26 of 77

Pin Signal

A1 Transition board ID0

A2 Transition board ID1

A3-A10 Ground

A11 Transition board ID2

A12 Transition board ID3

A13-A15 Ground

A16 Transition board handle switch

A17-A26 Ground

A27-A31 +5V

A32 Power control for transition board

C1 (reserved)

C2 (reserved)

C3 (reserved)

C4 (reserved)

C5 (reserved)

C6 (reserved)

C7 (reserved)

C8 (reserved)

C9 (reserved)

C10 (reserved)

C11 (reserved)

C12 Programmable transition board output 0

C13 Programmable transition board output 1

C14 Programmable transition board output 2

C15 Programmable transition board output 3

C16 Programmable transition board output 4

C17 Programmable transition board output 5

C18 Programmable transition board output 6

C19 Programmable transition board output 7

C20 Programmable transition board output 8

C21 Programmable transition board output 9

C22 Programmable transition board output 10

C23 Programmable transition board output 11

C24 Programmable transition board output 12

C25 Programmable transition board output 13

C26 Programmable transition board output 14

C27 Programmable transition board output 15

C28 (reserved)

C29 (reserved)

C30 (reserved)

C31 (reserved)

C32 (reserved)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 27 of 77

PMC-EVR-230 Front Panel Connections
The front panel of the PMC Event Receiver is shown in Figure 10.

OUT1 OUT2 OUT3 EXT.IN

F
A

IL

L
IN

K
E

V
T

O
U

T

Figure 10: PMC-EVR-230 Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

LINK Green Led Receiver Link Signal OK

EVT Yellow Led Incoming Event (RX)

OUT Yellow Led Active HW output

FAIL Red Led Receiver Violation

TX (SFP) next to leds LC Optical 850 nm Event link Transmit

RX (SFP) next to EXT.IN LC Optical 850 nm Event link Receiver

OUT0 LEMO-EPL TTL Programmable TTL Output 0

OUT1 LEMO-EPL TTL Programmable TTL Output 1

OUT2 LEMO-EPL TTL Programmable TTL Output 2

EXT IN LEMO-EPL TTL External Event Input

PMC-EVR-230 Pn4 User I/O Pin Configuration
The following table lists the connections to the PMC Pn4 User I/O Pins and to VME P2 pins

when the module is mounted on a host with “P4V2-64ac” mapping complying VITA-35 PMC-P4

to VME-P2-Rows-A,C.

PMC Pn4 pin VME P2 Pin Signal

2 A1 Transition board ID0

4 A2 Transition board ID1

6, 8, …, 20 A3-A10 Ground

22 A11 Transition board ID2

24 A12 Transition board ID3

26, 28, 30 A13-A15 Ground

32 A16 Transition board handle switch

34, 36, …, 52 A17-A26 Ground

54, 56, …, 62 A27-A31 +5V

64 A32 Power control for transition board

1 C1 (reserved)

3 C2 (reserved)

5 C3 (reserved)

7 C4 (reserved)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 28 of 77

9 C5 (reserved)

11 C6 (reserved)

13 C7 (reserved)

15 C8 (reserved)

17 C9 (reserved)

19 C10 (reserved)

21 C11 (reserved)

23 C12 Programmable transition board output 0

25 C13 Programmable transition board output 1

27 C14 Programmable transition board output 2

29 C15 Programmable transition board output 3

31 C16 Programmable transition board output 4

33 C17 Programmable transition board output 5

35 C18 Programmable transition board output 6

37 C19 Programmable transition board output 7

39 C20 Programmable transition board output 8

41 C21 Programmable transition board output 9

43 C22 Programmable transition board output 10

45 C23 Programmable transition board output 11

47 C24 Programmable transition board output 12

49 C25 Programmable transition board output 13

51 C26 Programmable transition board output 14

53 C27 Programmable transition board output 15

55 C28 (reserved)

57 C29 (reserved)

59 C30 (reserved)

61 C31 (reserved)

63 C32 (reserved)

cRIO-EVR-300 Front Panel Connections

Figure 11: cRIO-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description

TX (SFP) LC Optical 850 nm Event link Transmit

RX (SFP) LC Optical 850 nm Event link Receiver

ETH RJ45 10baseT/100baseTX Ethernet port

V+ Terminal +6 to +30 VDC Power supply positive

supply

GND Terminal Ground Power supply ground

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 29 of 77

cPCI-EVRTG-300 Front Panel Connections

Figure 12: cPCI-EVRTG-300 Event Receiver Front Panel

Connector / Led Style Level Description

10baseT with LEDs RJ45

green Led

amber Led

10baseT 10baseT Ethernet Connection

link established

link activity

10/100/GbE RJ45 (reserved)

LNK led 10/100/GbE link led

ACT led 10/100/GbE active led

COM RJ45 RS-232 (reserved)

TX Led (reserved)

RX Led (reserved)

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

LVPECL 0 EPG.00.302 3.3V diff. LVPECL LVPECL Output

LVPECL 1 EPG.00.302 3.3V diff. LVPECL LVPECL Output

A RGB Led (reserved)

B RGB Led (reserved)

C RGB Led (reserved)

D RGB Led (reserved)

CH 1 LC Optical 850 nm GunTX Output

CH 2 LC Optical 850 nm GunTX Output

Link TX (SFP) LC Optical 850 nm Event link Transmit

Link RX (SFP) LC Optical 850 nm Event link Receiver

cPCI-EVR-300 Front Panel Connections

Figure 13: cPCI-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

UNIV4/5 Universal slot Universal Output 4/5

UNIV6/7 Universal slot Universal Output 6/7

UNIV8/9 Universal slot Universal Output 8/9

UNIV10/11 Universal slot Universal Output 10/11

USB USB (USB Serial Port, reserved)

10/100 RJ45 (10/100 Ethernet, reserved)

IN0 Lemo TTL TTL Input IN0

IN1 Lemo TTL TTL Input IN1

Link TX (SFP) LC Optical 850 nm Event link Transmit

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 30 of 77

Link RX (SFP) LC Optical 850 nm Event link Receiver

PCIe-EVR-300 and IFB-300 Connections
Due to its small bracket the PCIe-EVR-300 has only a SFP transceiver and a micro-SCSI type

connector to interface to the IFB-300. The cable between the PCIe-EVR-300 and IFB-300 should

be connected/disconnected only when powered down.

Connector / Led Style Level Description

Link TX (SFP) LC Optical 850 nm Event link Transmit

Green: TX enable

Red: Fract.syn. not locked

Blue: Event out

Link RX (SFP)

Next to micro-SCSI

LC Optical 850 nm Event link Receiver

Green: link up

Red: link violation detected

Blue: event led

The interface board IFB-300 has eight Universal I/O slots which can be populated with various

types of Universal I/O modules. If an input module is populated in any slot a jumper has to be

mounted in that slot’s two pin header with marking “Insert jumper for input module”. Please note

that if an input module is mounted the corresponding Universal Output Mapping has to be tri-

stated. Refer to Table 1: Signal mapping IDs for details.

Universal Slot 0/1 signals are hard-wired to the TTLIN 0/1 signals.

Figure 14: IFB-300 Event Receiver Interface Board Front Panel

Connector / Led Style Level Description

UNIV0/1 Universal slot TTL Input / Universal I/O 0/1

UNIV2/3 Universal slot Universal I/O 2/3

UNIV4/5 Universal slot Universal I/O 4/5

UNIV6/7 Universal slot Universal I/O 6/7

UNIV8/9 Universal slot Universal I/O 8/9

UNIV10/11 Universal slot Universal I/O 10/11

UNIV12/13 Universal slot Universal I/O 12/13

UNIV14/15 Universal slot Universal I/O 14/15

LINK Green led RX link up

EVIN Yellow led RX event in

EVOUT Yellow led RX event led (mapped)

RXFAIL Red led RX violation detected

PXIe-EVR-300 Front Panel Connections
The PXIe-EVR-300 is available in two different front panel configurations: the PXIe-EVR-300U

with two Universal I/O slots and the PXIe-EVR-300I with a VHDCI connector for interfacing to

an external I/O box, the IFB-300.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 31 of 77

Figure 15: PXIe-EVR-300I Event Receiver Front Panel

Figure 16: PXIe-EVR-300U Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description

RX led RGB Led Red: receiver violation detected

Green: RX link OK, violation flag

cleared

Yellow: RX link OK, violation

detected

TX led RGB Led Green: link OK, flashes when event

code received

Red: Flashes on led event

LINK TX LC optical Transmit Optical Output (TX)

LINK RX LC optical Receiver Optical Input (RX)

TTL IN0 LEMO-EPY TTL External Event Input

TTL IN1 LEMO-EPY TTL External Event Input

UNIV0/1 Universal slot Universal Output 0/1

UNIV2/3 Universal slot Universal Output 2/3

VHDCI VHDCI LVDS Connection to IFB-300

The IFB-300 Universal I/Os are mapped to UNIV4 to UNIV19 i.e. IFB-300 UNIV0 shows up as

UNIV4 in the register map.

PXIe-EVR-300 Backplane Connections
The PXIe-EVR-300 provides a number of backplane I/O signals, conventional PXI timing and

synchronization signals and new differential signals introduced by the PXI Express specification.

The PXI trigger bus and the the PXI star triggers are bidirectional. The direction of the signal path

is specified by the output mapping register: the output has to be tri-stated for an external device to

drive the signal.

PXIe Signal EVR Input Signal EVR Output Signal Description

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 32 of 77

PXI_TRIG[0:7] TBIN[0:7] TBOUT[0:7] PXI trigger bus

PXI_STAR[0:16] TBIN[8:24] TBOUT[8:24] PXI star triggers

PXIe_DSTARA[0:16] n/a TBOUT[25:41] PXIe differential

LVPECL star

triggers

PXIe_DSTARB[0:16] n/a TBOUT[42:58] PXIe differential

LVDS star

triggers

PXIe_DSTARC[0:16]

TBIN[25:41] n/a PXIe differential

LVDS star input

signals

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 33 of 77

VME-EVR-230 and VME-EVR-230RF Network Interface
A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options.

It is also possible to control the module over the network interface.

Assigning an IP Address to the Module
By default the modules uses DHCP (dynamic host configuration protocol) to acquire an IP

address. In case a lease cannot be acquired the IP address set randomly in the 169.254.x.x subnet.

The board can be programmed to use a static address instead if DHCP is not available.

The module can be located looking at the lease log of the DHCP server or using a Windows tool

called Locator.exe.

Using Telnet to Configure Module
To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of

telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command Description

b Show/change boot parameters, IP address etc.

d Dump 16 bytes of memory

h / ? Show Help

m <address> [<data>] Read/Write FPGA CR/CSR, Function 0

r Reset Board

s Save boot configuration & dynamic configuration values into non-

volatile memory

t Tune delay line for event clock recovery

+ Manually increase delay line delay *)

- Manually decrease delay line delay *)

u Update IP2022 software

q Quit Telnet
*) This option has been added with IP2022 software version 060309 for VME-EVR-230RF (displayed in output from

help command)

Boot Configuration (command b)

Command b displays the current boot configuration parameters of the module. The parameter

may be changed by giving a new parameter value. The following parameters are displayed:

Parameter Description

Use DHCP 0 = use static IP address, 1 = use DHCP to acquire address, net mask

etc.

IP address IP address of module

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 34 of 77

Subnet mask Subnet mask of module

Default GW Default gateway

FPGA mode FPGA configuration mode

0 – FPGA is not configured after power up

1 – FPGA configured from internal Flash memory

2 – FPGA is configured from FTP server

FTP server FTP server IP address where configuration bit file resides

Username FTP server username

Password FTP server password

FTP Filename FTP server configuration file name

Flash Filename Configuration file name on internal flash

µs divider Integer divider to get from event clock to 1MHz, e.g. 125 for

124.9135 MHz

Fractional divider

configuration word

Micrel SY87739UMI fractional divider configuration word to set

refenrence for event clock

Note that after changing parameters the parameters have to be saved to internal flash by issuing

the Save boot configuration (s) command. The changes are applied only after resetting the

module using the reset command or hardware reset/power sequencing.

Memory dump (command d)

This command dumps 16 bytes of memory starting at the given address, if the address is omitted

the previous address value is increased by 16 bytes.

The most significant byte of the address determines the function of the access:

Address Function

0x78000000 CR/CSR space access

0x7a000000 EVR registers access

To dump the start of the EVR register map issue the ‘d’ command from the telnet prompt:

VME-EVR-230RF -> d 7a000000 

Addr 7a000000: 1005 0001 0000 0000 0000 0000 0000 0000

VME-EVR-230RF -> d 

Addr 7a000010: 0000 0000 0000 0000 0000 0000 0000 0000

VME-EVR-230RF ->

Memory modify (commands d and m)

The access size is always a short word i.e. two bytes.

To check the status register from the telnet prompt:

VME-EVR-230RF -> m 7a000000 

Addr 7a000000 data 1005

VME-EVR-230RF ->

To clear the violation flag issue:

VME-EVR-230RF -> m 7a000000 1005 

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 35 of 77

Addr 7a000000 data 0000

VME-EVR-230RF ->

Tuning Delay Line (command t)

The VME Event Receiver VME-EVR-230RF has to be configured for proper event clock rate and

the on-board delay line has to be tuned for the operating conditions. Before setting up the board

make sure you have an Event Generator with the correct event clock connected to the Event

Receiver. Also, let the EVR reach operating temperature (power on for 10 minutes in crate). See

previous section for setting up the event clock rate.

To start tuning issue command ‘t’ from the telnet prompt:

VME-EVR-230RF -> t 

Starting tuning...

Adjusted sampling phase to 75

Initial DCM phase -85

Fine tuned sampling phase to 78

Final DCM phase -73.

VME-EVR-230RF ->

After tuning the tuned values have to be stored in non-volatile memory:

VME-EVR-230RF -> s 

Confirm save (yes/no) ? yes 

Configuration saved.

VME-EVR-230RF ->

Upgrading IP2022 Microprocessor Software (command u)

To upgrade the Ubicom IP2022 microprocessor software download the upgrade image containing

the upgrade to the module using TFTP:

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> put upgrade.bin /fw

tftp> quit

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT upgrade.bin /fw

When the upgrade image has been downloaded and verified, enter at the telnet prompt following:

VME-EVR-230 -> u 

Really update firmware (yes/no) ? yes 

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 36 of 77

Self programming triggered.

The Event Receiver starts programming the new software and restarts.

Upgrading FPGA Configuration File
When the FPGA configuration file resides in internal flash memory a new file system image has

to be downloaded to the module. This is done using TFTP protocol:

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> put filesystem.bin /

tftp> quit

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT filesystem.bin /

Now the FPGA configuration file has been upgraded and the new configuration is loaded after

next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the

filesystem image before restarting the module. This is done following:

Linux

In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32

tftp> bin

tftp> get / verify.bin

tftp> quit

$ diff filesystem.bin verify.bin

$

If files differ you should get following message:
Binary files filesystem.bin and verify.bin differ

Windows

In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 GET / verify.bin

C:\> fc /b filesystem.bin verify.bin

Comparing files filesystem.bin and verify.bin

FC: no differences encountered

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 37 of 77

UDP Remote Programming Protocol
The VME-EVR can be remotely programmed using the 10baseT Ethernet interface with a

protocol over UDP (User Datagram Protocol) which runs on top of IP (Internet Protocol). The

default port for remote programming is UDP port 2000. The UDP commands are built upon the

following structure:

access_type (1 byte) status (1 byte) data (2 bytes)

address (4 bytes)

ref (4 bytes)

The first field defines the access type:

access_type Description

0x01 Read Register from module

0x02 Write and Read back Register from module

The second field tells the status of the access:

Status Description

0 Command OK

-1 Bus ERROR (Invalid read/write address)

-2 Timeout (FPGA did not respond)

-3 Invalid command

The access size is always a short word i.e. two bytes. The most significant byte of the address

determines the function of the access:

Address Function

0x78000000 CR/CSR space access

0x7a000000 EVR registers access

Read Access (Type 0x01)

The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte)

0x01

status (1 byte)

0x00

data (2 bytes)

0x0000

address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)

ref (4 bytes)

0x00000000

If the read access is successful the VME-EVR replies to the same host and port the message came

from with the following packet:

access_type (1 byte)

0x01

status (1 byte)

0x00

data (2 bytes)

0x0032

address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 38 of 77

ref (4 bytes)

0x00000000

Write Access (Type 0x02)

The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte)

0x02

status (1 byte)

0x00

data (2 bytes)

0x0001

address (4 bytes)

0x7a000002 (Mapping RAM Address register Function 0 address)

ref (4 bytes)

0x00000000

If the write access is successful the VME-EVR replies to the same host and port the message

came from with the following packet:

access_type (1 byte)

0x02

status (1 byte)

0x00

data (2 bytes)

0x0001

address (4 bytes)

0x80000000 (Mapping RAM Address register Function 0 address)

ref (4 bytes)

0x00000000

Notice that in the reply message the data returned really is the data read from the address

specified in the address field so one can verify that the data really was written ok.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 39 of 77

cRIO-EVR-300

Connections
The cRIO-EVR connects to the CompactRIO backplane through a DSUB connector. The pin

usage is as follows:

cRIO (DSUB) signal EVR signal Description

IDSEL UART RXD Asynchronous serial data receive

USER0 UNIV3 Output

USER1 UNIV2 Output

USER2 UNIV1 Output

USER3 UNIV0 Output

USER4 UNIV3 Input

USER5 UNIV2 Input

USER6 UNIV1 Input

USER7 UNIV0 Input

USER8 UART TXD Asynchronous serial data transmit

The serial interface runs with a baud rate of 115200 baud, 8 bit data, one stop bit, no parity and

no handshaking.

Boot Monitor
The boot monitor is started in case the cRIO-EVR receives a ‘@’ character immediately after it

has been powered up. The boot monitor can be used to flash the cRIO-EVR firmware. It supports

the following commands:

Command Description

EPI Erase FPGA Primary configuration Image

Outputs ‘+’ for each successful sector erase

EGI Erase FPGA Golden configuration Image

Outputs ‘+’ for each successful sector erase

L Load S3-records into RAM

‘@’ to stop loading records

V Verify S3-records with RAM

‘@’ to stop verifying records

PPI Program FPGA Primary Image from RAM to flash.

Outputs ‘+’ for each successful page program

PGI Program FPGA Golden Image from RAM to flash.

Outputs ‘+’ for each successful page program

RP Load FPGA Primary Image from flash into RAM

RG Load FPGA Golden Image from flash into RAM

. Exit Boot Monitor

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 40 of 77

Firmware Upgrade (on Linux)
The configuration flash memory of the cRIO-EVR holds two firmware images: a primary image

and a golden image. The primary image is normally loaded and upgraded. If the primary image

for gets corrupted because of a programming error or power failure during upgrade the golden

image gets loaded which will allow retrying the firmware upgrade of the primary image.

This upgrade procedure will require the cRIO-EVR-UNIVIO –board connected to the cRIO-

EVR. The firmware can be upgraded on a CompactRIO system using a tool written in LabView.

Connect a USB cable to the cRIO-EVR-UNIVIO USB connector and start your favourite

terminal program with 115200 baud, 8 bit data, one stop bit, no parity and no handshaking.

1. Keep the ‘@’ key pressed, power up the cRIO-EVR and wait until the cRIO-EVR

responds with periods ‘.’

2. Enter the command ‘EPI’ (the characters are not echoed back). The cRIO-EVR will

respond with a number of ‘+’ one for each erased sector and a final ‘.’ when complete.

3. Enter the command ‘L’

4. From a command window send the new firmware image to the serial port e.g.
dd if=firmware_file.exo of=/dev/ttyusb0

5. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-

records. The cRIO-EVR will responds with the number of S-records received and the

number of checksum errors, two concatenated 32-bit hexadecimal numbers

6. Enter command ‘PPI’ to program the firmware image from RAM to flash. The cRIO-

EVR will output lots of ‘+’, one for each successful page program and a final ‘.’

7. The following steps are optional: Enter command ‘RP’ to refresh the RAM image from

flash.

8. Enter command ‘V’

9. From a command window send the new firmware image to the serial port e.g.
dd if=firmware_file.exo of=/dev/ttyusb0

10. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-

records. The cRIO-EVR will responds with the number of S-records received and the

number of checksum errors, two concatenated 32-bit hexadecimal numbers

Programming Details

VME CR/CSR Support
The VME Event Receiver modules provides CR/CSR Support as specified in the VME64x

specification. The CR/CSR Base Address Register is determined after reset by the inverted state

of VME64x P1 connector signal pins GA4*-GA0*. In case the parity signal GAP* does not

match the GAx* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which

corresponds to slot number 31.

Note: the boards can be used in standard VME crates where geographical pins do not exist, in this

case the user may either insert jumpers to set the geographical address or use the default setting

when the board’s CR/CSR base address will be set to 0xf8. The jumper settings for a non-

VME64x crate as as follows:

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 41 of 77

slot GAP* GA4* GA3* GA2* GA1* GA0*

1 open open open open open Jumper

2 open open open open Jumper open

3 Jumper open open open Jumper Jumper

4 open open open Jumper open open

5 Jumper open open Jumper open Jumper

6 Jumper open open Jumper Jumper open

7 open open open Jumper Jumper Jumper

8 open open Jumper open open open

9 Jumper open Jumper open open Jumper

10 Jumper open Jumper open Jumper open

11 open open Jumper open Jumper Jumper

12 Jumper open Jumper Jumper open open

13 open open Jumper Jumper open Jumper

14 open open Jumper Jumper Jumper open

15 Jumper open Jumper Jumper Jumper Jumper

16 open Jumper open open open open

17 Jumper Jumper open open open Jumper

18 Jumper Jumper open open Jumper open

19 open Jumper open open Jumper Jumper

20 Jumper Jumper open Jumper open open

21 open Jumper open Jumper open Jumper

After power up or reset the board responds only to CR/CSR accesses with its geographical

address. Prior to accessing Event Receiver functions the board has to be configured by accessing

the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board ID etc. to identify

boards plugged in different VME slots. The following table lists the required field to locate an

Event Receiver module.

CR address Register VME-EVR-230RF

0x27, 0x2B, 0x2F Manufacturer’s ID (IEEE

OUI)

0x000EB2

0x33, 0x37, 0x3B, 0x3F Board ID 0x455246E6

For convenience functions are provided to locate VME64x capable boards in the VME crate.

STATUS vmeCRFindBoard(int slot, UINT32 ieee_oui, UINT32 board_id,

 int *p_slot);

To locate the first Event Receiver in the crate starting from slot 1, the function has to be called

following:

#include “vme64x_cr.h”

int slot = 1;

int slot_evr;

vmeCRFindBoard(slot, MRF_IEEE_OUI, MRF_EVR200RF_BID, &slot_evr);

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 42 of 77

If this function returns OK, an Event Receiver board was found in slot slot_evr.

Event Receiver Function 0,1 and 2 Registers
The Event Receiver specific register are accessed via Function 0 and Function 1 as specified in

the VME64x specification. The access size for Function 0 has been limited to 2 kbytes (0x0800)

so not all EVR registers are accessible through this Function. The access size for Functions 1 and

2 is 256 kbytes, so this function should not be used for A16 access. Contrary to the VME64x

specification the address/address modifier compare logic does not distinguish between privileged

and non-privileged accesses and accepts both.

To enable a Function, the address decoder compare register for the Function in CSR space has to

be programmed. For convenience a function to perform this is provided, too:

STATUS vmeCSRWriteADER(int slot, int func, UINT32 ader);

To configure Function 0 of a Event Receiver board in slot 3 to respond to A16 accesses at the

address range 0x1800-0x1FFF the function has to be called with following values:

vmeCSRWriteADER(3, 0, 0x18A4);

ADER contents are composed of the address mask and address modifier, the above is the same

as:

vmeCSRWriteADER(3, 0, (slot << 11) | (VME_AM_SUP_SHORT_IO << 2));

To get the memory mapped pointer to the configured Function 0 registers on the Event Receiver

board the following VxWorks function has to be called:

MrfEvrStruct *pEvr;
sysBusToLocalAdrs(VME_AM_SUP_SHORT_IO, (char *) (slot << 11),

 (void *) pEvr);

Note: using the data transmission capability requires more than 4 kbytes, so using function 1 with

addressing mode A24 is suggested, following:

vmeCSRWriteADER(3, 1, (slot << 19) | (VME_AM_STD_USR_DATA << 2));

MrfEvrStruct *pEvr;
sysBusToLocalAdrs(VME_AM_STD_USR_DATA, (char *) (slot << 19),

 (void *) pEvr);

cPCI-EVR-300 and PCIe-EVR-300 Firmware Upgrade
The cPCI-EVR-300 and PCIe-EVR-300 have a configuration memory that holds two

configuration images, a so called primary and golden image. The golden image is a backup image

that is loaded in case loading of the primary image fails due to a programming error. The primary

image can be upgraded with the following command after loading the driver in Linux:

dd if=new_image.bit of=/dev/er3a1

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 43 of 77

A power cycle is required to load the new configuration image on the PCIe-EVR-300. A reboot is

sufficient for the cPCI-EVR-300.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 44 of 77

Register Map

Address Register Type Description

0x000 Status UINT32 Status Register

0x004 Control UINT32 Control Register

0x008 IrqFlag UINT32 Interrupt Flag Register

0x00C IrqEnable UINT32 Interrupt Enable Register

0x010 PulseIrqMap UINT32 Mapping register for pulse interrupt

0x020 DataBufCtrl UINT32 Data Buffer Control and Status Register

0x024 TxDataBufCtrl UINT32 TX Data Buffer Control and Status Register

0x02C FWVersion UINT32 Firmware Version Register

0x040 EvCntPresc UINT32 Event Counter Prescaler

0x04C UsecDivider UINT32 Divider to get from Event Clock to 1 MHz

0x050 ClockControl UINT32 Event Clock Control Register

0x05C SecSR UINT32 Seconds Shift Register

0x060 SecCounter UINT32 Timestamp Seconds Counter

0x064 EventCounter UINT32 Timestamp Event Counter

0x068 SecLatch UINT32 Timestamp Seconds Counter Latch

0x06C EvCntLatch UINT32 Timestamp Event Counter Latch

0x070 EvFIFOSec UINT32 Event FIFO Seconds Register

0x074 EvFIFOEvCnt UINT32 Event FIFO Event Counter Register

0x078 EvFIFOCode UINT16 Event FIFO Event Code Register

0x07C LogStatus UINT32 Event Log Status Register

0x080 FracDiv UINT32 Micrel SY87739L Fractional Divider Configuration

Word

0x088 RxInitPS UINT32 Reserved for Initial value for RF recovery DCM

phase shift (VME-EVR-230RF)

0x090 GPIODir UINT32 Front Panel UnivIO GPIO signal direction

0x094 GPIOIn UINT32 Front Panel UnivIO GPIO input register

0x098 GPIOOut UINT32 Front Panel UnivIO GPIO output register

0x0A0 SPIData UINT32 SPI Data Register

0x0A4 SPIControl UINT32 SPI Control Register

0x100 Prescaler_0 UINT32 Prescaler 0 Divider

0x104 Prescaler_1 UINT32 Prescaler 1 Divider

0x108 Prescaler_2 UINT32 Prescaler 2 Divider

0x200 Pulse0Ctrl UINT32 Pulse 0 Control Register

0x204 Pulse0Presc UINT32 Pulse 0 Prescaler Register

0x208 Pulse0Delay UINT32 Pulse 0 Delay Register

0x20C Pulse0Width UINT32 Pulse 0 Width Register

0x210 Pulse 1 Registers

0x220 Pulse 2 Registers

… … … …

0x2F0 Pulse 15 Registers

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 45 of 77

0x400 FPOutMap0 UINT16 Front Panel Output 0 Map Register

0x402 FPOutMap1 UINT16 Front Panel Output 1 Map Register

0x404 FPOutMap2 UINT16 Front Panel Output 2 Map Register

0x406 FPOutMap3 UINT16 Front Panel Output 3 Map Register

0x408 FPOutMap4 UINT16 Front Panel Output 4 Map Register

0x40A FPOutMap5 UINT16 Front Panel Output 5 Map Register

0x40C FPOutMap6 UINT16 Front Panel Output 6 Map Register

0x40E FPOutMap7 UINT16 Front Panel Output 7 Map Register

0x440 UnivOutMap0 UINT16 Front Panel Universal Output 0 Map Register

0x442 UnivOutMap1 UINT16 Front Panel Universal Output 1 Map Register

0x444 UnivOutMap2 UINT16 Front Panel Universal Output 2 Map Register

0x446 UnivOutMap3 UINT16 Front Panel Universal Output 3 Map Register

0x448 UnivOutMap4 UINT16 Front Panel Universal Output 4 Map Register

0x44A UnivOutMap5 UINT16 Front Panel Universal Output 5 Map Register

0x44C UnivOutMap6 UINT16 Front Panel Universal Output 6 Map Register

0x44E UnivOutMap7 UINT16 Front Panel Universal Output 7 Map Register

0x450 UnivOutMap8 UINT16 Front Panel Universal Output 8 Map Register

0x452 UnivOutMap9 UINT16 Front Panel Universal Output 9 Map Register

0x480 TBOutMap0 UINT16 Transition Board Output 0 Map Register

0x482 TBOutMap1 UINT16 Transition Board Output 1 Map Register

0x484 TBOutMap2 UINT16 Transition Board Output 2 Map Register

0x486 TBOutMap3 UINT16 Transition Board Output 3 Map Register

0x488 TBOutMap4 UINT16 Transition Board Output 4 Map Register

0x48A TBOutMap5 UINT16 Transition Board Output 5 Map Register

0x48C TBOutMap6 UINT16 Transition Board Output 6 Map Register

0x48E TBOutMap7 UINT16 Transition Board Output 7 Map Register

0x490 TBOutMap8 UINT16 Transition Board Output 8 Map Register

0x492 TBOutMap9 UINT16 Transition Board Output 9 Map Register

0x494 TBOutMap10 UINT16 Transition Board Output 10 Map Register

0x496 TBOutMap11 UINT16 Transition Board Output 11 Map Register

0x498 TBOutMap12 UINT16 Transition Board Output 12 Map Register

0x49A TBOutMap13 UINT16 Transition Board Output 13 Map Register

0x49C TBOutMap14 UINT16 Transition Board Output 14 Map Register

0x49E TBOutMap15 UINT16 Transition Board Output 15 Map Register

0x4A0 TBOutMap16 UINT16 Transition Board Output 16 Map Register

0x4A2 TBOutMap17 UINT16 Transition Board Output 17 Map Register

0x4A4 TBOutMap18 UINT16 Transition Board Output 18 Map Register

0x4A6 TBOutMap19 UINT16 Transition Board Output 19 Map Register

0x4A8 TBOutMap20 UINT16 Transition Board Output 20 Map Register

0x4AA TBOutMap21 UINT16 Transition Board Output 21 Map Register

0x4AC TBOutMap22 UINT16 Transition Board Output 22 Map Register

0x4AE TBOutMap23 UINT16 Transition Board Output 23 Map Register

0x4B0 TBOutMap24 UINT16 Transition Board Output 24 Map Register

0x4B2 TBOutMap25 UINT16 Transition Board Output 25 Map Register

0x4B4 TBOutMap26 UINT16 Transition Board Output 26 Map Register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 46 of 77

0x4B6 TBOutMap27 UINT16 Transition Board Output 27 Map Register

0x4B8 TBOutMap28 UINT16 Transition Board Output 28 Map Register

0x4BA TBOutMap29 UINT16 Transition Board Output 29 Map Register

0x4BC TBOutMap30 UINT16 Transition Board Output 30 Map Register

0x4BE TBOutMap31 UINT16 Transition Board Output 31 Map Register

0x500 FPInMap0 UINT32 Front Panel Input 0 Mapping Register

0x504 FPInMap1 UINT32 Front Panel Input 1 Mapping Register

0x580 GTX0Dly UINT32 GTX Output 0 Fine Delay Register

0x584 GTX1Dly UINT32 GTX Output 1 Fine Delay Register

0x588 GTX2Dly UINT32 GTX Output 2 Fine Delay Register

0x58C GTX3Dly UINT32 GTX Output 3 Fine Delay Register

0x590 GTX4Dly UINT32 GTX Output 4 Fine Delay Register

0x594 GTX5Dly UINT32 GTX Output 5 Fine Delay Register

0x598 GTX6Dly UINT32 GTX Output 6 Fine Delay Register

0x59C GTX7Dly UINT32 GTX Output 7 Fine Delay Register

0x600 CML4Pat00 UINT32 20 bit output pattern for state low

0x604 CML4Pat01 UINT32 20 bit output pattern for state rising edge

0x608 CML4Pat10 UINT32 20 bit output pattern for state falling edge

0x60C CML4Pat11 UINT32 20 bit output pattern for state high

0x610 CML4Ena

GTX0Ctrl

UINT32 CML 4 Output Control Register

0x614 CML4HP

GTX0HP

UINT16 CML 4 Output High Period Count

0x616 CML4LP

GTX0LP

UINT16 CML 4 Output Low Period Count

0x618 CML4Samp

GTX0Samp

UINT32 CML 4 Output Number of 20 bit word patterns

GTX0 Output Number of 40 bit word patterns

0x620 CML5Pat00 UINT32 20 bit output pattern for state low

0x624 CML5Pat01 UINT32 20 bit output pattern for state rising edge

0x628 CML5Pat10 UINT32 20 bit output pattern for state falling edge

0x62C CML5Pat11 UINT32 20 bit output pattern for state high

0x630 CML5Ena

GTX1Ctrl

UINT32 CML 5 Output Control Register

0x634 CML5HP

GTX1HP

UINT16 CML 5 Output High Period Count

0x636 CML5LP

GTX1LP

UINT16 CML 5 Output Low Period Count

0x638 CML5Samp

GTX1Samp

UINT32 CML 5 Output Number of 20 bit word patterns

GTX1 Output Number of 40 bit word patterns

0x640 CML6Pat00 UINT32 20 bit output pattern for state low

0x644 CML6Pat01 UINT32 20 bit output pattern for state rising edge

0x648 CML6Pat10 UINT32 20 bit output pattern for state falling edge

0x64C CML6Pat11 UINT32 20 bit output pattern for state high

0x650 CML6Ena

GTX2Ctrl

UINT32 CML 6 Output Control Register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 47 of 77

0x654 CML6HP

GTX2HP

UINT16 CML 6 Output High Period Count

0x656 CML6LP

GTX2LP

UINT16 CML 6 Output Low Period Count

0x658 CML6Samp

GTX2Samp

UINT32 CML 6 Output Number of 20 bit word patterns

GTX2 Output Number of 40 bit word patterns

0x670 GTX3Ctrl UINT32 GTX3 Output Control Register

0x674 GTX3HP UINT16 GTX3 Output High Period Count

0x676 GTX3LP UINT16 GTX3 Output Low Period Count

0x678 GTX3Samp UINT32 GTX3 Output Number of 40 bit word patterns

0x690 GTX4Ctrl UINT32 GTX4 Output Control Register

0x694 GTX4HP UINT16 GTX4 Output High Period Count

0x696 GTX4LP UINT16 GTX4 Output Low Period Count

0x698 GTX4Samp UINT32 GTX4 Output Number of 40 bit word patterns

0x6B0 GTX5Ctrl UINT32 GTX5 Output Control Register

0x6B4 GTX5HP UINT16 GTX5 Output High Period Count

0x6B6 GTX5LP UINT16 GTX5 Output Low Period Count

0x6B8 GTX5Samp UINT32 GTX5 Output Number of 40 bit word patterns

0x6D0 GTX6Ctrl UINT32 GTX6 Output Control Register

0x6D4 GTX6HP UINT16 GTX6 Output High Period Count

0x6D6 GTX6LP UINT16 GTX6 Output Low Period Count

0x6D8 GTX6Samp UINT32 GTX6 Output Number of 40 bit word patterns

0x6E0 GTX7Ctrl UINT32 GTX7 Output Control Register

0x6E4 GTX7HP UINT16 GTX7 Output High Period Count

0x6E6 GTX7LP UINT16 GTX7 Output Low Period Count

0x6E8 GTX7Samp UINT32 GTX7 Output Number of 40 bit word patterns

0x800 –

0xFFF

DataBuf Data Buffer Receive Memory

0x1000 –

0x17FF

 Diagnostics counters

0x1800 –

0x1FFF

TxDataBuf Data Buffer Transmit Memory

0x2000 –

0x3FFF

EventLog 512 x 16 byte position Event Log

0x4000 –

0x5FFF

MapRam1 Event Mapping RAM 1

0x6000 –

0x7FFF

MapRam2 Event Mapping RAM 2

0x8000 –

0x80FF

configROM

0x8100 –

0x81FF

scratchRAM

0x8200 –

0x82FF

SFPEEPROM SFP Transceiver EEPROM contents (SFP address

0xA0)

0x8300 – SFPDIAG SFP Transceiver diagnostics (SFP address 0xA2)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 48 of 77

0x83FF

0x20000 –

0x23FFF

CML4PMEM

GTX0MEM

 Pattern memory:

8k bytes CML output 4 (VME-EVR-230RF)

16k bytes GTX output 0 (cPCI-EVRTG-300)

0x24000 –

0x27FFF

CML5PMEM

GTX1MEM

 Pattern memory:

8k bytes CML output 5 (VME-EVR-230RF)

16k bytes GTX output 1 (cPCI-EVRTG-300)

0x28000 –

0x2BFFF

CML6PMEM

GTX2MEM

 Pattern memory:

8k bytes CML output 6 (VME-EVR-230RF)

16k bytes GTX output 2 (cPCI-EVRTG-300)

0x2C000 –

0x2FFFF

GTX3MEM Pattern memory:

16k bytes GTX output 3 (cPCI-EVRTG-300)

0x30000 –

0x33FFF

GTX4MEM Pattern memory:

16k bytes GTX output 4 (cPCI-EVRTG-300)

0x34000 –

0x37FFF

GTX5MEM Pattern memory:

16k bytes GTX output 5 (cPCI-EVRTG-300)

0x38000 –

0x3BFFF

GTX6MEM Pattern memory:

16k bytes GTX output 6 (cPCI-EVRTG-300)

0x3C000 –

0x3FFFF

GTX7MEM Pattern memory:

16k bytes GTX output 7 (cPCI-EVRTG-300)

Status Register

address bit 31 bit 30 bit 29 Bit 28 bit 27 bit 26 bit 25 bit 24

0x000 DBUS7 DBUS6 DBUS5 DBUS4 DBUS3 DBUS2 DBUS1 DBUS0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x001 LEGVIO

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x002

address bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x003 SFPMOD LINK FIFOSTP

Bit Function

DBUS7 Read status of DBUS bit 7

DBUS6 Read status of DBUS bit 6

DBUS5 Read status of DBUS bit 5

DBUS4 Read status of DBUS bit 4

DBUS3 Read status of DBUS bit 3

DBUS2 Read status of DBUS bit 2

DBUS1 Read status of DBUS bit 1

DBUS0 Read status of DBUS bit 0

LEGVIO Legacy VIO (series 100, 200 and 230)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 49 of 77

SFPMOD SFP module status:

‘0’ – plugged in

‘1’ – no module installed

LINK Link status:

‘0’ – link down

‘1’ – link up

FIFOSTP Event FIFO stopped flag

Control Register

address bit 31 bit 30 bit 29 bit 28 bit 27 Obit 26 bit 25 bit 24

0x004 EVREN EVFWD TXLP RXLP OUTEN SRST LEMDE GTXIO

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x005 CDREN

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x006 TSDBUS RSTS LTS MAPEN MAPRS

address bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x007 LOGRS LOGEN LOGDIS LOGSE RSFIFO

Bit Function

EVREN Event Receiver Master enable

TXLP Transmitter loopback:

0 – Receive signal from SFP transceiver (normal operation)

1 – Loopback EVR TX into EVR RX

RXLP Receiver loopback:

0 – Transmit signal from EVR on SFP transceiver TX

1 – Loopback SFP RX on SFP TX

OUTEN Output enable for FPGA external components / IFB-300 (cPCI-EVRTG-

300, PCIe-EVR-300, PXIe-EVR-300I)

0 – disable outputs

1 – enable outputs

SRST Soft reset IP

LEMDE Little endian mode (cPCI-EVR-300, PCIe-EVR-300)

0 – PCI core in big endian mode (power up default)

1 – PCI core in little endian mode

GTXIO GUN-TX output hardware inhibit override

0 – honor hardware inhibit signal (default)

1 – inhibit override, don’t care about hardware inhibit input state

CDREN PCIe-EVR-300 External Clock and Data recovery enable

0 – CDR Bypassed

1 – CDR Enabled

TSDBUS Use timestamp counter clock on DBUS4

RSTS Reset Timestamp. Write 1 to reset timestamp event counter and timestamp

latch.

LTS Latch Timestamp: Write 1 to latch timestamp from timestamp event

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 50 of 77

counter to timestamp latch.

MAPEN Event mapping RAM enable.

MAPRS Mapping RAM select bit for event decoding:

0 – select mapping RAM 1

1 – select mapping RAM 2.

LOGRS Reset Event Log. Write 1 to reset log.

LOGEN Enable Event Log. Write 1 to (re)enable event log.

LOGDIS Disable Event Log. Write 1 to disable event log.

LOGSE Log Stop Event Enable.

RSFIFO Reset Event FIFO. Write 1 to clear event FIFO.

Interrupt Flag Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x008

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x00b IFLINK IFDBUF IFHW IFEV IFHB IFFF IFVIO

Bit Function

IFLINK Link state change interrupt flag

IFDBUF Data buffer flag

IFHW Hardware interrupt flag (mapped signal)

IFEV Event interrupt flag

IFHB Heartbeat interrupt flag

IFFF Event FIFO full flag

IFVIO Receiver violation flag

Interrupt Enable Register

address Bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x00c IRQEN PCIIE

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x00f IELINK IEDBUF IEHW IEEV IEHB IEFF IEVIO

Bit Function

IRQEN Master interrupt enable:

0 – disable all interrupts

1 – allow interrupts

PCIIE PCI core interrupt enable (cPCI-EVR-300, PCIe-EVR-300, PXIe-EVR-

300)

This bit is used by the low level driver to disable further interrupts before

the first interrupt has been handled in user space

IELINK Link state change interrupt flag

IEDBUF Data buffer interrupt enable

IEHW Hardware interrupt enable (mapped signal)

IEEV Event interrupt enable

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 51 of 77

IEHB Heartbeat interrupt enable

IEFF Event FIFO full interrupt enable

IEVIO Receiver violation interrupt enable

Hardware Interrupt Mapping Register

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x013 Mapping ID (see Table 1 for mapping IDs)

Receive Data Buffer Control and Status Register

address Bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x022 DBRX/

DBENA

DBRDY/

DBDIS

DBCS DBEN RXSIZE(11:8)

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x023 RXSIZE(7:0)

Bit Function

DBRX Data Buffer Receiving (read-only)

DBENA Set-up for Single Reception (write ‘1’ to set-up)

DBRDY Data Buffer Transmit Complete / Interrupt Flag

DBDIS Stop Reception (write ‘1’ to stop/disable)

DBCS Data Buffer Checksum Error (read-only)

Flag is cleared by writing ‘1’ to DBRX or DBRDY or disabling

data buffer

DBEN Data Buffer Enable Data Buffer Mode

‘0’ – Distributed bus not shared with data transmission, full speed

distributed bus

‘1’ – Distributed bus shared with data transmission, half speed

distributed bus

RXSIZE Data Buffer Received Buffer Size (read-only)

Transmit Data Buffer Control Register

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x025 TXCPT TXRUN TRIG ENA MODE

address bit 15 Bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x026 DTSZ(10:8)

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x027 DTSZ(7:2) 0 0

Bits Function
TXCPT Data Buffer Transmission Complete

TXRUN Data Buffer Transmission Running – set when data transmission has

been triggered and has not been completed yet

TRIG Data Buffer Trigger Transmission

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 52 of 77

Write ‘1’ to start transmission of data in buffer

ENA Data Buffer Transmission enable

‘0’ – data transmission engine disabled

‘1’ – data transmission engine enabled

MODE Distributed bus sharing mode

‘0’ – distributed bus not shared with data transmission

‘1’ – distributed bus shared with data transmission

DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

FPGA Firmware Version Register

address bit 31 bit 27 bit 26 bit 24

0x02C EVR = 0x1 Form Factor

address bit 23 bit 8

0x02D Reserved

address bit 7 bit 0

0x02F Version ID

Bits Function
Form Factor 0 – CompactPCI 3U

1 – PMC

2 – VME64x

3 – CompactRIO

4 – CompactPCI 6U

6 – PXIe

7 – PCIe

Event Counter Clock Prescaler Register

address bit 15 bit 0

0x042 Timestamp Event Counter Clock Prescaler Register

Microsecond Divider Register

address bit 15 bit 0

0x04e Rounded integer value of 1 s * event clock

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register

should read 50. This value is used e.g. for the heartbeat timeout.

Clock Control Register

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x052 RECDCM

RUN

RECDCM

INITDONE

RECDCM

PSDONE

EVDCM

STOPPED

EVDCM

LOCKED

EVDCM

PSDONE

CGLOCK RECDCM

PSDEC

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x053 RECDCM RECDCM EVDCM EVDCM EVDCM EVDCM EVDCM EVCLKSEL

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 53 of 77

PSINC RES PSDEC PSINC SRUN SRES RES

Bit Function

CGLOCK Micrel SY87739L locked (read-only)

Other bits n/a on cPCI-EVR

Seconds Shift Register

address bit 31 bit 0

0x05c Seconds Shift Register (read-only)

Seconds Counter Register

address bit 31 bit 0

0x060 Seconds Counter Register (read-only)

Timestamp Event Counter Register

address bit 31 bit 0

0x064 Timestamp Event Counter Register (read-only)

Seconds Latch Register

address bit 31 bit 0

0x068 Seconds Latch Register (read-only)

Timestamp Event Latch Register

address bit 31 bit 0

0x06c Timestamp Event Latch Register (read-only)

FIFO Seconds Register

address bit 31 bit 0

0x070 FIFO Seconds Register (read-only)

FIFO Timestamp Register

address bit 31 bit 0

0x074 FIFO Timestamp Register (read-only)

FIFO Event Register

address bit 7 bit 0

0x07b FIFO Event Code Register (read-only)

Note that reading the FIFO event code registers pulls the event code and timestamp/seconds value

from the FIFO for access. The correct order to read an event from FIFO is to first read the event

code register and after this the timestamp/seconds registers in any order. Every read access to the

FIFO event register pulls a new event from the FIFO if it is not empty.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 54 of 77

Event Log Status Register

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x07C LOGOV

address bit 15 bit 9 bit 8 bit 0

0x07E Log writing pointer

SY87739L Fractional Divider Configuration Word

address bit 31 bit 0

0x080 SY87739L Fractional Divider Configuration Word

Configuration Word Frequency with 24 MHz reference oscillator

0x00DE816D 125 MHz

0x00FE816D 124.95 MHz

0x0C928166 124.908 MHz

0x018741AD 119 MHz

0x072F01AD 114.24 MHz

0x049E81AD 106.25 MHz

0x008201AD 100 MHz

0x025B41ED 99.956 MHz

0x0187422D 89.25 MHz

0x0082822D 81 MHz

0x0106822D 80 MHz

0x019E822D 78.900 MHz

0x018742AD 71.4 MHz

0x0C9282A6 62.454 MHz

0x009743AD 50 MHz

0x025B43AD 49.978 MHz

0x0176C36D 49.965 MHz

Prescaler 0 Register

address Bit 15 bit 0

0x102 Prescaler 0 Register

Prescaler 1 Register

address Bit 15 bit 0

0x106 Prescaler 1 Register

Prescaler 2 Register

address Bit 15 bit 0

0x10a Prescaler 2 Register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 55 of 77

Pulse Generator Registers

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x203 PxOUT PxSWS PxSWR PxPOL PxMRE PxMSE PxMTE PxENA

address bit 31 bit 0

0x204 Pulse Generator Prescaler Register

address bit 31 bit 0

0x208 Pulse Generator Delay Register

address bit 31 bit 0

0x20C Pulse Generator Width Register
Note: addresses shown above are for pulse generator 0.

bit Function

PxOUT Pulse Generator Output (read-only)

PxSWS Pulse Generator Software Set

PxSWC Pulse Generator Software Reset

PxPOL Pulse Generator Output Polarity

0 – normal polarity

1 – inverted polarity

PxMRE Pulse Generator Event Mapping RAM Reset Event Enable

0 – Reset events disabled

1 – Mapped Reset Events reset pulse generator output

PxMSE Pulse Generator Event Mapping RAM Set Event Enable

0 – Set events disabled

1 – Mapped Set Events set pulse generator output

PxMTE Pulse Generator Event Mapping RAM Trigger Event Enable

0 – Event Triggers disabled

1 – Mapped Trigger Events trigger pulse generator

PxENA Pulse Generator Enable

0 – generator disabled

1 – generator enabled

Front Panel Output Mapping Registers

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x401 Front panel OUT0 Mapping ID (see Table 1 for mapping IDs)

0x403 Front panel OUT1 Mapping ID

0x405 Front panel OUT2 Mapping ID

0x407 Front panel OUT3 Mapping ID

0x409 Front panel OUT4 Mapping ID

0x40B Front panel OUT5 Mapping ID

0x40D Front panel OUT6 Mapping ID

0x40F Front panel OUT7 Mapping ID
Notes:

cPCI-EVR does not have any Front panel outputs.

PMC-EVR has three front panel outputs OUT0 to OUT2.
VME-EVR-230 has eight Front panel outputs OUT0 to OUT7.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 56 of 77

VME-EVR-230RF has seven Front panel outputs OUT0 to OUT3 (TTL level), OUT4 to OUT6 CML level (see section about CML

outputs for details).

Universal I/O Output Mapping Registers

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x441 Universal I/O UNIV0 Mapping ID (see Table 1 for mapping IDs)

0x443 Universal I/O UNIV1 Mapping ID

0x445 Universal I/O UNIV2 Mapping ID

0x447 Universal I/O UNIV3 Mapping ID

0x449 Universal I/O UNIV4 Mapping ID

0x44b Universal I/O UNIV5 Mapping ID

0x44d Universal I/O UNIV6 Mapping ID

0x44f Universal I/O UNIV7 Mapping ID

0x451 Universal I/O UNIV8 Mapping ID

0x453 Universal I/O UNIV9 Mapping ID

0x453 Universal I/O UNIV10 Mapping ID

0x453 Universal I/O UNIV11 Mapping ID
Notes:

cPCI-EVR-220/230 has two Universal I/O slots (four outputs UNIV0 to UNIV3). An optional side-by-side module provides three

more slots (six additional outputs UNIV4 to UNIV9).
PMC-EVR does not have any Universal I/O slots.

VME-EVR has two Universal I/O slots (four outputs UNIV0 to UNIV3).

cPCI-EVR-300 has six Universal I/O slots (twelve outputs UNIV0 to UNIV11).

Transition Board Output Mapping Registers

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

0x481 Transition Board Output TBOUT0 Mapping ID (see Table 1 for mapping IDs)

0x483 Transition Board Output TBOUT1 Mapping ID

0x485 Transition Board Output TBOUT2 Mapping ID

… …
Notes:

cPCI-EVRs and cRIO-EVR do not have any Transition board outputs.

Front Panel Input Mapping Registers

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x500 EXTLV0 BCKLE0 EXTLE0 EXTED0 BCKEV0 EXTEV0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

0x501 T0DB7 T0DB6 T0DB5 T0DB4 T0DB3 T0DB2 T0DB1 T0DB0

address bit 15 bit 8

0x502 Backward Event Code Register for front panel input 0

address bit 7 bit 0

0x503 External Event Code Register for front panel input 0

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

0x504 EXTLV1 BCKLE1 EXTLE1 EXTED1 BCKEV1 EXTEV1

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 57 of 77

0x505 T1DB7 T1DB6 T1DB5 T1DB4 T1DB3 T1DB2 T1DB1 T1DB0

address bit 15 bit 8

0x506 Backward Event Code Register for front panel input 1

address bit 7 bit 0

0x507 External Event Code Register for front panel input 1

bit Function

EXTLVx Backward HW Event Level Sensitivity for input x

0 – active high

1 – active low

BCKLEx Backward HW Event Level Trigger enable for input x

0 – disable level events

1 – enable level events, send out backward event code every 1 us when

input is active (see EXTLVx for level sensitivity)

EXTLEx External HW Event Level Trigger enable for input x

0 – disable level events

1 – enable level events, apply external event code to active mapping

RAM every 1 us when input is active (see EXTLVx for level sensitivity)

EXTEDx Backward HW Event Edge Sensitivity for input x

0 – trigger on rising edge

1 – trigger on falling edge

BCKEVx Backward HW Event Edge Trigger Enable for input x

0 – disable backward HW event

1 – enable backward HW event, send out backward event code on

detected edge of hardware input (see EXTEDx bit for edge)

EXTEVx External HW Event Enable for input x

0 – disable external HW event

1 – enable external HW event, apply external event code to active

mapping RAM on edge of hardware input

TxDB7-

TxDB0

Backward distributed bus bit enable:

0 – disable distributed bus bit

1 – enable distributed bus bit control from hardware input: e.g. when

TxDB7 is ‘1’ the hardware input x state is sent out on distributed bus bit

7.

CML Output Pattern Registers (CMLxPatxx)

 bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

 19 MSB 18 17 16

 bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

 15 14 13 12 11 10 9 8

 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 7 6 5 4 3 2 1 0 LSB

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 58 of 77

Bit 19 MSB is sent out first, LSB last

Note that GTX pattern registers are accessed through the first four address locations of the GTX

pattern memory.

CML/GTX Output Control Register

Address bit 31 bit 16

0x610 Frequency mode trigger position

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

0x612 GTX3MD GTX2MD GTXPH1 GTXPH0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0x613 CMLRC CMLTL CMLMD CMLRES CMLPWD CMLENA

GTX3MD GUN-TX-300 Mode (cPCI-EVRTG-300 only)

0 – CML/GTX Mode

1 – SFP output in GUN-TX-300 Mode

GTX2MD GUN-TX-203 Mode (cPCI-EVRTG-300 only)

0 – CML/GTX Mode

1 – SFP output in GUN-TX-203 Mode

GTXPH1:0 GUN-TX-203 Trigger output phase shift (cPCI-EVRTG-300 only)

00 – no delay

01 – output pulse delayed by ¼ event clock period (~2 ns)

10 – output pulse delayed by ½ event clock period (~4 ns)

11 – output pulse delayed by ¾ event clock period (~6 ns)

CMLRC CML Pattern recycle

CMLTL CML Frequency mode trigger level

CMLMD CML Mode Select:

00 = classic mode

01 = frequency mode

10 = pattern mode

11 = undefined

CMLRES CML Reset

1 = reset CML output (default on EVR power up)

0 = normal operation

CMLPWD CML Power Down

1 = CML outputs powered down (default on EVR power up)

0 = normal operation

CMLENA CML Enable

0 = CML output disabled (default on EVR power up)

1 = CML output enabled

SFP Module EEPROM and Diagnostics
Small Form Factor Pluggable (SFP) transceiver modules provide a means to identify the module

by accessing an EEPROM. As an advanced feature some modules also support reading dynamic

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 59 of 77

information including module temperature, receive and transmit power levels etc. from the

module. The EVR gives access to all of this information through a memory window of 2 × 256

bytes. The first 256 bytes consist of the EEPROM values and the rest of the advanced values.

Byte #

Decimal

Field size

(bytes)

Notes Value Hex

BASE ID FIELDS

0 1 Type of serial transceiver 03 = SFP transceiver

1 1 Extended identifier of type serial

transceiver

04 = serial ID module

definition

2 1 Code for connector type 07 = LC

3 – 10 8 Code for electronic compatibility or

optical compatibility

11 1 Code for serial encoding algorithm

12 1 Nominal bit rate, units of 100

MBits/sec

13 1 Reserved

14 1 Link length supported for 9/125 µm

fiber, units of km

15 1 Link length supported for 9/125 µm

fiber, units of 100 m

16 1 Link length supported for 50/125

µm fiber, units of 10 m

17 1 Link length supported for 62.5/125

µm fiber, units of 10 m

18 1 Link length supported for copper,

units of meters

19 1 Reserved

20 – 35 16 SFP transceiver vendor name

(ASCII)

36 1 Reserved

37 – 39 3 SFP transceiver vendor IEEE

company ID

40 – 55 16 Part number provided by SFP

transceiver vendor (ASCII)

56 – 59 4 Revision level for part number

provided by vendor (ASCII)

60 – 62 3 Reserved

63 1 Check code for Base ID Fields

EXTENDED ID FIELDS

64 – 65 2 Indicated which optional SFP

signals are implemented

66 1 Upper bit rate margin, units of %

67 1 Lower bit rate margin, units of %

68 – 83 16 Serial number provided by vendor

(ASCII)

84 – 91 8 Vendor’s manufacturing date code

92 – 94 3 Reserved

95 1 Check code for the Extended ID

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 60 of 77

Fields

VENDOR SPECIFIC ID FIELDS

96 – 127 32 Vendor specific data

128 – 255 Reserved

ENHANCED FEATURE SET MEMORY

256 – 257 2 Temp H Alarm Signed twos complement

integer in increments of 1/256

°C

258 – 259 2 Temp L Alarm Signed twos complement

integer in increments of 1/256

°C

260 – 261 2 Temp H Warning Signed twos complement

integer in increments of 1/256

°C

262 – 263 2 Temp L Warning Signed twos complement

integer in increments of 1/256

°C

264 – 265 2 VCC H Alarm Supply voltage decoded as

unsigned integer in increments

of 100 µV

266 – 267 2 VCC L Alarm Supply voltage decoded as

unsigned integer in increments

of 100 µV

268 – 269 2 VCC H Warning Supply voltage decoded as

unsigned integer in increments

of 100 µV

270 – 271 2 VCC L Warning Supply voltage decoded as

unsigned integer in increments

of 100 µV

272 – 273 2 Tx Bias H Alarm Laser bias current decoded as

unsigned integer in increment

of 2 µA

274 – 275 2 Tx Bias L Alarm Laser bias current decoded as

unsigned integer in increment

of 2 µA

276 – 277 2 Tx Bias H Warning Laser bias current decoded as

unsigned integer in increment

of 2 µA

278 – 279 2 Tx Bias L Warning Laser bias current decoded as

unsigned integer in increment

of 2 µA

280 – 281 2 Tx Power H Alarm Transmitter average optical

power decoded as unsigned

integer in increments of 0.1

µW

282 – 283 2 Tx Power L Alarm Transmitter average optical

power decoded as unsigned

integer in increments of 0.1

µW

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 61 of 77

284 – 285 2 Tx Power H Warning Transmitter average optical

power decoded as unsigned

integer in increments of 0.1

µW

286 – 287 2 Tx Power L Warning Transmitter average optical

power decoded as unsigned

integer in increments of 0.1

µW

288 – 289 2 Rx Power H Alarm Receiver average optical

power decoded as unsigned

integer in increments of 0.1

µW

290 – 291 2 Rx Power L Alarm Receiver average optical

power decoded as unsigned

integer in increments of 0.1

µW

292 – 293 2 Rx Power H Warning Receiver average optical

power decoded as unsigned

integer in increments of 0.1

µW

294 – 295 2 Rx Power L Warning Receiver average optical

power decoded as unsigned

integer in increments of 0.1

µW

296 – 311 16 Reserved

312 – 350 External Calibration Constants

351 1 Checksum for Bytes 256 – 350

352 – 353 2 Real Time Temperature Signed twos complement

integer in increments of 1/256

°C

354 – 355 2 Real Time VCC Power

SupplyVoltage

Supply voltage decoded as

unsigned integer in increments

of 100 µV

356 – 357 2 Real Time Tx Bias Current Laser bias current decoded as

unsigned integer in increment

of 2 µA

358 – 359 2 Real Time Tx Power Transmitter average optical

power decoded as unsigned

integer in increments of 0.1

µW

360 – 361 2 Real Time Rx Power Receiver average optical

power decoded as unsigned

integer in increments of 0.1

µW

362 – 365 4 Reserved

366 1 Status/Control bit 7: TX_DISABLE State

bit 6 – 3: Reserved

bit 2: TX_FAULT State

bit 1: RX_LOS State

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 62 of 77

bit 0: Data Ready (Bar)

367 1 Reserved

368 1 Alarm Flags bit 7: Temp High Alarm

bit 6: Temp Low Alarm

bit 5: VCC High Alarm

bit 4: VCC Low Alarm

bit 3: Tx Bias High Alarm

bit 2: Tx Bias Low Alarm

bit 1: Tx Power High Alarm

bit 0: Tx Power Low Alarm

369 1 Alarm Flags cont. bit 7: Rx Power High Alarm

bit 6: Rx Power Low Alarm

bit 5 – 0: Reserved

370 – 371 2 Reserved

372 1 Warning Flags bit 7: Temp High Warning

bit 6: Temp Low Warning

bit 5: VCC High Warning

bit 4: VCC Low Warning

bit 3: Tx Bias High Warning

bit 2: Tx Bias Low Warning

bit 1: Tx Power High Warning

bit 0: Tx Power Low Warning

373 1 Warning Flags cont. bit 7: Rx Power High Warning

bit 6: Rx Power Low Warning

bit 5 – 0: Reserved

374 – 511 Reserved/Vendor Specific

Application Programming Interface (API)
A Linux device driver and application interface is provided to setup up the Event Receiver.

Function Reference

int EvrOpen(struct MrfErRegs **pEr, char *device_name);

Description Opens the EVR device for access. Simultaneous

accesses are allowed.

Parameters struct MrfErRegs **pEr EvgOpen returns pointer to EVR registers by

memory mapping the I/O registers into user

space.

 char *device_name Holds the device name of the EVR, e.g.

/dev/ega3. The device names are set up by the

module_load script of the device driver.

Return value Return file descriptor on success.

 Returns -1 on error.

int EvrClose(int fd);

Description Closes the EVR device after opening by

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 63 of 77

EvrOpen.

Parameters int fd File descriptor returned by EvrOpen

Return value Returns zero on success.

 Returns -1 on error.

int EvrEnable(volatile struct MrfErRegs *pEr, int state);

Description Enables the EVR and allows reception of

events.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int state 0: disable

1: enable

Return value Returns zero when EVR disabled

 Returns non-zero when EVR enabled

int EvrGetEnable(volatile struct MrfErRegs *pEr);

Description Retrieves state of the EVR.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when EVR disabled

 Returns non-zero when EVR enabled

void EvrDumpStatus(volatile struct MrfErRegs *pEr);

Description Dump EVR status.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear);

Description Get/clear EVR link violation status.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int clear 0: don’t clear

1: clear status

Return value Returns 0 when no violation detected.

Return non-zero when violation detected.

void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram);

Description Dump EVR mapping RAM.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of RAM: 0 or 1

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 64 of 77

Return value None

int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int
enable);

Description Enable/disable EVR mapping RAM.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of RAM: 0 or 1

 int enable 0: disable RAM

1: enable RAM

Return value None

int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);

Description Enable/disable EVR event forwarding.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code to enable/disable event

forwarding

 int enable 0: disable event forwarding for code

1: enable event forwarding for code

Return value None

int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int
state);

Description Enables forwarding of enabled event codes.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int state 0: disable forwarding

1: enable forwarding

Return value Returns zero when forwarding disabled

 Returns non-zero when forwarding enabled

int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);

Description Retrieves state of event forwarding.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when forwarding disabled

 Returns non-zero when forwarding enabled

int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);

Description Enable/disable EVR led event (Front panel

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 65 of 77

led will flash up for enabled event codes).

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code to enable/disable led event for

 int enable 0: disable led event for code

1: enable led event for code

Return value None

int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);

Description Enable/disable storing specified event code

into FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code to enable/disable

 int enable 0: disable storing event code in FIFO

1: enable storing event code in FIFO

Return value None

int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);

Description Enable/disable latching timestamp on

specified event code.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code to enable/disable

 int enable 0: disable latching of timestamp on event

code

1: enable latching of timestamp upon

reception of event code

Return value None

int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);

Description Enable/disable stopping of writes to event

log on reception of event code.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code to enable/disable

 int enable 0: disable stop log event

1: stop log writes upon reception of event

code

Return value None

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 66 of 77

int EvrClearFIFO(volatile struct MrfErRegs *pEr);

Description Clear EVR Event FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None.

int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent
*fe);

Description Get one Event from EVR Event FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 struct FIFOEvent *fe

struct FIFOEvent {

 u32 TimestampHigh;

 u32 TimestampLow;

 u32 EventCode;

};

Pointer to structure to place event in.

Return value 0 – Event retrieved successfully

-1 – Event FIFO was empty

int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int
enable);

Description Enable/disable stopping of writing to event

log on reception of event codes with STOP

Log mapping bit set.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0: disable stop log event

1: stop log writes upon reception of event

codes with STOP log mapping bit set.

Return value Returns zero when stop events disabled

 Returns non-zero when stop events enabled

int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);

Description Check if log stop events are enabled.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when stop events disabled

 Returns non-zero when stop events enabled

int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable writing to log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0: disable writes to log

1: enable writes to log

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 67 of 77

Return value Returns zero when log enabled

 Returns non-zero when log stopped.

int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable);

Description Get log state.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when logging enabled

 Returns non-zero when logging stopped.

int EvrGetLogStart(volatile struct MrfErRegs *pEr);

Description Get log start position.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns relative address to first log entry in

log ring buffer.

int EvrGetLogEntries(volatile struct MrfErRegs *pEr);

Description Get number of entries in log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns number of entries in log (0 to 512).

void EvrDumpFIFO(volatile struct MrfErRegs *pEr);

Description Dump EVR FIFO on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrClearLog(volatile struct MrfErRegs *pEr);

Description Empty EVR Event Log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None.

void EvrDumpLog(volatile struct MrfErRegs *pEr);

Description Print out full EVR event log on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code,
int trig, int set, int clear);

Description Set up pulse generators for event codes.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 68 of 77

 int ram Number of mapping RAM: 0 or 1

 int code Event code affected

 int trig 0: no change

1: Trigger pulse generator from event code

 int set 0: no change

1: Set pulse high with this event code

 int clear 0: no change

1: Pull pulse low with this event code

Return value None

int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int
code, int trig, int set, int clear);

Description Set up pulse generators for event codes.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ram Number of mapping RAM: 0 or 1

 int code Event code affected

 int trig 0: no change

1: Don’t trigger pulse generator from this

event code

 int set 0: no change

1: Don’t set pulse high with this event code

 int clear 0: no change

1: Don’t pull pulse low with this event code

Return value None

int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int
presc, int delay, int width);

Description Set pulse generator parameters.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int pulse Number of pulse generator 0-9

 int presc Prescaler value

 int delay Delay Value

 int width Width Value

Return value Returns 0 on success, -1 on error

void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses);

Description Dump EVR pulse generator settings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int pulses Number of pulse generators to dump

Return value None

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 69 of 77

int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int
polarity, int map_reset_ena, int map_set_ena, int map_trigger_ena,
int enable);

Description Set pulse generator properties.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int pulse Number of pulse generator 0-9

 int polarity 0: normal polarity

1: inverted polarity

 int map_reset_ena 0: disable reset input

1: enable reset input

 int map_set_ena 0: disable set input

1: enable set input

 int map_trigger_ena 0: disable trigger input

1: enable trigger input

 int enable 0: pulse output disabled

1: pulse output enabled

Return value Returns 0 on success, -1 on error

int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up universal output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int output Universal Output number

 int map Signal mapping (see erapi.h for details)

Return value Returns 0 on success, -1 on error

void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int
outputs);

Description Dump EVR Universal output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int outputs Number of outputs to dump

Return value None

int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up front panel output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int output Front Panel Output number

 int map Signal mapping (see erapi.h for details)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 70 of 77

Return value Returns 0 on success, -1 on error

void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Front panel output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int outputs Number of outputs to dump

Return value None

int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int
map);

Description Set up Transition board output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int output Transition Board Output number

 int map Signal mapping (see erapi.h for details)

Return value Returns 0 on success, -1 on error

void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Transition board output

mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int outputs Number of outputs to dump

Return value None

void EvrIrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void
(*handler)(int));

Description Assign EVR interrupt handler.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int fd File descriptor returned by EvrOpen

 void (*handler)(int) Pointer to interrupt handler function

Return value None

int EvrIrqEnable(volatile struct MrfErRegs *pEr, int mask);

Description Enable EVR interrupts.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int mask Interrupt mask (see erapi.h) for mask bits.

Return value Returns mask read back from EVR.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 71 of 77

int EvrGetIrqFlags(volatile struct MrfErRegs *pEr);

Description Get EVR interrupt flags.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns EVR interrupt flags.

int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask);

Description Clears EVR interrupt flags.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int mask Interrupt clear mask (see erapi.h) for flag

bits.

Return value Returns flags read back from EVR.

void EvrIrqHandled(int fd);

Description Function to call at the end of interrupt

handler function.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int fd File descriptor returned by EvrOpen

Return value None

int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map);

Description Set up interrupt mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int map Signal mapping (see erapi.h for details)

Return value Returns 0 on success, -1 on error

int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int
enable);

Description Enable/disable UNIV-LVPECL-DLY output.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int dlymod Number of UNIV-LVPECL-DLY module:

cPCI-EVR-230:

0 – module slot UNIV0/1

1 – module slot UNIV2/3

cPCI-EVR-300:

0 – module slot UNIV10/11

1 – module slot UNIV8/9

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 72 of 77

 int enable 0 – disable module output

1 – enable module output

Return value Returns 0 on success, -1 on error

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int
dly0, int dly1);

Description Enable/disable UNIV-LVPECL-DLY output.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int dlymod Number of UNIV-LVPECL-DLY module:

cPCI-EVR-230:

0 – module slot UNIV0/1

1 – module slot UNIV2/3

cPCI-EVR-300:

0 – module slot UNIV10/11

1 – module slot UNIV8/9

 int dly0 Delay value for output even slot # 0/2/8/10:

0 – shortest delay

1023 – longest delay (approx. 9-10 ps/step)

 int dly1 Delay value for output odd slot # 1/3/9/11:

0 – shortest delay

1023 – longest delay (approx. 9-10 ps/step)

Return value Returns 0 on success, -1 on error

int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);

Description Set fractional divider control word which

provides reference frequency for receiver.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int fracdiv Fractional divider control word

Return value Returns control word written

int EvrGetFracDiv(volatile struct MrfErRegs *pEr);

Description Get fractional divider control word which

provides reference frequency for receiver.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns control word

int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable data buffer mode. When data

buffer mode is enabled every other

distributed bus byte is reserved for data

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 73 of 77

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0 – disable data buffer mode

1 – enable data buffer mode

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

bit definitions).

int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);

Description Get data buffer mode. When data buffer

mode is enabled every other distributed bus

byte is reserved for data transmission thus the

distributed bus bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

bit definitions).

int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);

Description Enable reception of data buffer. After

reception of a data buffer further reception is

disabled until re-enabled by software.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0 – disable data buffer reception.

1 – enable data buffer reception

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

definitions).

int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);

Description Receive data buffer data.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 char *dbuf Pointer to local data buffer

 int size Size of dbuf buffer.

Return value Size of received buffer.

-1 on error (no buffer received, local buffer

too small or checksum error)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 74 of 77

int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);

Description Set timestamp counter divider

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int div Timestamp divider value:

0 – count timestamp events (or use DBUS4

as clock)

1 to 65535 – count at event clock/value rate

Return value Return divider value.

int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);

Description Control timestamp counter count from

distributed bus bit 4 (DBUS4).

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0 – disable counting from DBUS4

1 – enable timestamp counting from DBUS4.

Note: Timestamp counter has to be 0.

Return value

int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);

Description Get Timestamp Counter value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Timestamp Counter value

int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);

Description Get Timestamp Seconds Counter value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Timestamp Seconds Counter value

int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr);

Description Get Timestamp Latch value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Timestamp Latch value

int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr);

Description Get Timestamp Seconds Latch value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 75 of 77

base.

Return value Timestamp Seconds Latch value

int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);

Description Set prescaler divider

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int presc Number of prescaler

 int div Prescaler divider value:

1 to 65535 – count at event clock/value rate

Return value Return divider value.

int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level_enable);

Description Set external event code

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ttlin Number of front panel input: 0, 1

 int code Event code to generate on detected edge/level

 int edge_enable 0 – disable

1 – enable events on active edge

 int level_enable 0 – disable

1 – enable sending out event every 1 us on

active level

Return value 0 – successful

-1 – error

int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level_enable);

Description Set backwards event code

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ttlin Number of front panel input: 0, 1

 int code Event code to send out on detected edge/level

 int edge_enable 0 – disable

1 – enable events on active edge

 int level_enable 0 – disable

1 – enable sending out event every 1 us on

active level

Return value 0 – successful

-1 – error

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 76 of 77

int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin,
int edge);

Description Set external input edge sensitivity

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ttlin Number of front panel input: 0, 1

 int edge 0 – detect rising edges

1 – detect falling edges

Return value 0 – successful

-1 – error

int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin,
int level);

Description Set external input edge sensitivity

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int ttlin Number of front panel input: 0, 1

 int level 0 – detect high level (active high)

1 – detect low level (active low)

Return value 0 – successful

-1 – error

int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable transmitter data buffer mode.

When data buffer mode is enabled every

other distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 int enable 0 – disable transmitter data buffer mode

1 – enable transmitter data buffer mode

Return value Transmit data buffer status (see Transmit

Data Buffer Control Register on page 51 for

bit definitions).

int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);

Description Get transmit data buffer status. When data

buffer mode is enabled every other

distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Transmit data buffer status (see Transmit

Data Buffer Control Register on page 51 for

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-007

Page: 77 of 77

bit definitions).

int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int
size);

Description Get transmit data buffer status. When data

buffer mode is enabled every other

distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

 char *dbuf Pointer to local data buffer

 int size Size of data in bytes to be transmitted:

4, 8, 12, …, 2048.

Return value Size of buffer being sent.

-1 on error.

int EvrGetFormFactor(volatile struct MrfErRegs *pEr);

Description Get form factor code from EVR.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Form factor. See FPGA Firmware Version

Register on page 52 for details.

