Micro-Research Finland Oy Document: cPCI-LDRV.doc

Vilitalontie 83 C, FI-00660 Helsinki, Finland Date: 13 March 2007
Issue: 1

Page: 1 of 7
Author: Jukka Pietarinen

CompactPCI Event Generator and
Event Receiver Linux Kernel 2.6 Drivers

Contents

INETOAUCHION. ..ttt ettt ettt et e e bt e e st e e bt e e sabeesbteesabeesnbeessaeesabeeenns
INSTALLATION ..ottt ettt sttt sttt sttt sh et sae e bt e snesaeennenaeennens
PCI9030 EEPROM ACCESS ...ttt sttt et et sttt s
XCFO8P Platform F1ash ACCESS .....eeeuiiiiiiiiiieeiieeeie ettt s
FPGA CONFIGUIALION ..ottt ettt ettt st ettt et ettt et enneas
Memory Mapping EVG/EVR regiSters iNt0 USET SPACE......cccueerveeruierierierieeieenieenitesieeseeeeeeeees
APPENDIX: MmOdUle_load SCTIPL....cc.ueteiiiiiiieiiit ettt ettt ettt et e eiee st esiee e
APPENDIX: module_unload SCTIPL.......c..eeruiiiiiiiiiieeiieerieeeite ettt ettt e ettt esiee e e sbee e



Micro-Research Finland Oy Document: cPCI-LDRV.doc

Vilitalontie 83 C, FI-00660 Helsinki, Finland Page: 2 of 7

Introduction

This document describes the Linux Kernel 2.6 device drivers for the CompactPCI Event
Generator and CompactPCI/PMC Event Receiver.

INSTALLATION

Unpack the device drivers sources:
$ tar zxf pci_mrfev.tar.gz

The kernel headers for the target kernel have to be installed. To build kernel modules run make in
the top level directory:

$ make

To install (as root)

# make modules_install
# depmod -a

To load and unload the kernel drivers two script are provided. The module_load script loads the
modules pci_mrfevg and pci_mrfevr for both the event generator (EVG) and event receiver
(EVR).

To load the drivers (as root)

# sh module_load

Found 2 Event Generators.

Creating device nodes...

Creating nodes /dev/ega[0-3] for major 253
Creating nodes /dev/egb[0-3] for major 254
Found 2 Event Receivers.

Creating device nodes...

Creating nodes /dev/era[0-3] for major 251
Creating nodes /dev/erb[0-3] for major 252

To unload the drivers (as root)

# sh module_unload
Unloading modules
Removing device nodes

The drivers dynamically allocate one major device number and four minor numbers for each
board. The module_load script creates device nodes into the /dev directory and sets the
permission for the devices. The group for the devices is set to 'mrf' and the script assumes this
group does exist. The device nodes created follow the rules:

/dev/egal0-3] First EVG

/dev/egb[0-3] Seconds EVG

/dev/egc[0-3] Third EVG etc.




Micro-Research Finland Oy Document: cPCI-LDRV.doc

Valitalontie 83 C, FI-00660 Helsinki, Finland Page: 3 of 7
/dev/era[0-3] First EVR
/dev/erb[0-3] Seconds EVR
/dev/erc[0-3] Third EVR etc.

The minor numbers have following functions:

minor 0: read/write access to PCI9030 EEPROM

minor 1: read/write access to XCFO8P Platform Flash configuration memory
minor 2: read FPGA status/write FPGA configuration data

minor 3: memory map EVG/EVR registers into user space

The module_load script allow group write access to the minor device 3, all other devices have
write access by root only.

PCI9030 EEPROM ACCESS

The serial EEPROM that holds the initialization data for the PCI9030 bridge can be accessed
through minor device 0. To dump the EEPROM contents issue command:

$ dd if=/dev/egal of=eeprom.eep

This generates an ascii readable file of the EEPROM contents. One can also dump the contents to
the screen:

$ cat /dev/egal
PCI9030 EEPROM Contents

0x20dc Device ID

Oxla3e Vendor ID

0x0290 PCI Status

0x0000 PCI Command

0x1180 Class Code

0x0001 Class Code / Revision

0x20dc Subsystem ID

Oxla3e Subsystem Vendor ID

0x0000 MSB New Capability Pointer

0x0040 LSB New Capability Pointer

0x0000 (Maximum Latency and Minimum Grant are not loadable)
0x0100 Interrupt Pin (Interrupt Line Routing is not loadable)
0x4801 MSW of Power Management Capabilities

0x4801 LSW of Power Management Next Capability Pointer

0x0000 MSW of Power Management Data / PMCSR Brdge Support Extension
0x0000 LSW of Power Management Control / Status

0x0000 MSW of Hot Swap Control / Status

O0x4c06 LSW of Hot Swap Next Capability Pointer / Hot Swap Control
0x0000 PCI Vital Product Data Address

0x0003 PCI Vital Product Data Next Capability Pointer

O0x0fff MSW of Local Address Space 0 Range
0x0000 LSW of Local Address Space 0 Range
0x0000 MSW of Local Address Space 1 Range
0x0000 LSW of Local Address Space 1 Range
0x0000 MSW of Local Address Space 2 Range
0x0000 LSW of Local Address Space 2 Range




Micro-Research Finland Oy Document: cPCI-LDRV.doc

Valitalontie 83 C, FI-00660 Helsinki, Finland Page: 4 of 7

0x0000 MSW of Local Address Space 3 Range

0x0000 LSW of Local Address Space 3 Range

0x0000 MSW of Expansion ROM Range

0x0000 LSW of Expansion ROM Range

0x0000 MSW of Local Address Space 0 Local Base Address (Remap)
0x0001 LSW of Local Address Space 0 Local Base Address (Remap)
0x0000 MSW of Local Address Space 1 Local Base Address (Remap)
0x0000 LSW of Local Address Space 1 Local Base Address (Remap)
0x0000 MSW of Local Address Space 2 Local Base Address (Remap)
0x0000 LSW of Local Address Space 2 Local Base Address (Remap)
0x0000 MSW of Local Address Space 3 Local Base Address (Remap)
0x0000 LSW of Local Address Space 3 Local Base Address (Remap)

0x0010 MSW of Expansion ROM Local Base Address (Remap)
0x0000 LSW of Expansion ROM Local Base Address (Remap)
0x0180 MSW of Local Address Space 0 Bus Region Descriptor
0x0002 LSW of Local Address Space Bus Region Descriptor
0x0080 MSW of Local Address Space Bus Region Descriptor
0x0000 LSW of Local Address Space Bus Region Descriptor
0x0080 MSW of Local Address Space Bus Region Descriptor
0x0000 LSW of Local Address Space Bus Region Descriptor
0x0080 MSW of Local Address Space Bus Region Descriptor
0x0000 LSW of Local Address Space 3 Bus Region Descriptor
0x0080 MSW of Expansion ROM Bus Region Descriptor

0x0000 LSW of Expansion ROM Bus Region Descriptor

0x0000 MSW of Chip Select Base Address

0x1001 LSW of Chip Select Base Address

0x0000 MSW of Chip Select Base Address

0x0000 LSW of Chip Select Base Address

0x0000 MSW of Chip Select Base Address

0x0000 LSW of Chip Select Base Address

0x0000 MSW of Chip Select Base Address

0x0000 LSW of Chip Select 3 Base Address

0x0030 Serial EEPROM Write-Protected Address Boundary
0x0000 LSW of Interrupt Control/Status

0x0078 MSW of PCI Target Response, Serial EEPROM, and Initialization
Control

0x1100 LSW of PCI Target Response, Serial EEPROM, and Initialization
Control

0x0024 MSW of General Purpose I/0 Control

0x9900 LSW of General Purpose I/O Control

0x0000 MSW of Hidden Power Management Data Select
0x0000 LSW of Hidden Power Management Data Select
0x0000 MSW of Hidden Power Management Data Select
0x0000 LSW of Hidden Power Management Data Select

wW NN PO

WNhNE P OO

O R e

To program the EEPROM run (as root)

# dd if=eeprom.eep of=/dev/egal
6+1 records in
6+1 records out

NOTE! Invalid data in the EEPROM can cause the board to become unaccessible and require
factory service.



Micro-Research Finland Oy Document: cPCI-LDRV.doc

Vilitalontie 83 C, FI-00660 Helsinki, Finland Page: 5 of 7

XCFO8P Platform Flash Access

NOTE! Accessing the flash is very slow. Reading 1Mbyte of configuration data takes about 30 s
on a NI PXI-8195, erasing and writing ~400 kbytes of configuration data takes over 3 min.

The Platform Flash device holds the configuration data for the Virtex Il Pro FPGA which is
loaded when the board is powered up. The contents of the flash device can be read with the
following command (this reads in first IMbyte of config data):

$ dd if=/dev/egal of=flash.bit bs=1024 count=1024

1024+0 records in
1024+0 records out

To erase the flash and write new configuration data issue the command (as root):
# dd if=flash.bit of=/dev/egal

767+1 records in
767+1 records out

After the programming is finished the FPGA is configuration is loaded from the flash.

FPGA Configuration

The FPGA may be configured with direct access overriding the configuration data in the platform
flash. To load the FPGA issue the command (as root):

# dd if=fpga.bit of=/dev/ega2
767+1 records in
767+1 records out

The FPGA status may be displayed following:

$ cat /dev/ega2
FPGA status

DONE 1

INIT 1

MODE 000
GHIGH_B deasserted
GWE 1

DCI_MATCH 1
DCM_LOCK 1
CRC_ERROR 0

Memory Mapping EVG/EVR registers into user space

Access to the EVG/EVR registers is provided through the minor device 3 which is given group
read/write access by to module_load script.



Micro-Research Finland Oy Document: cPCI-LDRV.doc

Vilitalontie 83 C, FI-00660 Helsinki, Finland Page: 6 of 7

Below is an excerpt from the API sources for the EVG to show how the user space access to the
EVG registers is gained:

int EvgOpen (struct MrfEgRegs **pEg, char *device_name)

{
int fd;

/* Open Event Generator device for read/write */
fd = open(device_name, O_RDWR) ;
#ifdef DEBUG
DEBUG_PRINTF ("EvgOpen: open (\"%s\", O_RDWR) returned %d\n",
device_name, f£fd);
#endif
if (fd !'= -1)
{
/* Memory map Event Generator registers */
*pEg = (struct MrfEgRegs *) mmap (0, EVG_MEM_WINDOW,
PROT_READ | PROT_WRITE,
MAP__SHARED, fd, 0);
#ifdef DEBUG
DEBUG_PRINTF ("EvgOpen: mmap returned %08x, errno %d\n", (int) *pEg,

errno) ;
fendif
if (*pEg == MAP_FAILED)
{
close (fd) ;

return -1;

}

return £fd;

APPENDIX: module_load script

#!/bin/sh

# sh /home/jpietari/mrf/event/sw/linux-multi/module_load
# sh /home/]jpietari/mrf/event/sw/linux-multi/module_unload
# cd /home/jpietari/mrf/event/sw/linux-multi

#make modules_install
#/sbin/depmod -a
/sbin/modprobe pci_mrfevg || exit 1
/sbin/modprobe pci_mrfevr ||

majors=$ (awk "\$2==\"mrfevg\" {print \$1}" /proc/devices)

echo "Found" $(echo $Smajors | wc -w) "Event Generators."
echo "Creating device nodes..."

device=1

for major in $majors; do
dev=$ (echo S$device | awk '{ printf "%c", 96+ $1}")
device=$ ((++device))



Micro-Research Finland Oy Document: cPCI-LDRV.doc

Vilitalontie 83 C, FI-00660 Helsinki, Finland Page: 7 of 7

rm —-f /dev/eg$dev[0-3]
echo "Creating nodes /dev/eg"$dev"[0-3] for major" Smajor
mknod '/dev/eg'S$dev'0' ¢ Smajor O
mknod '/dev/eg'Sdev'l' ¢ Smajor 1
mknod '/dev/eg'Sdev'2' ¢ Smajor 2
mknod '/dev/eg'S$Sdev'3' ¢ Smajor 3
chgrp mrf '/dev/eg'S$dev[0-3]
chmod g+w '/dev/eg'S$Sdev'3'
done

majors=$ (awk "\$2==\"mrfevr\" {print \$1}" /proc/devices)

echo "Found" $(echo $majors | wc -w) "Event Receivers."
echo "Creating device nodes..."

device=1
for major in $majors; do
dev=$ (echo S$device | awk '{ printf "%c", 96+ $1}")
device=$ ((++device))
rm —-f /dev/er$dev[0-3]
echo "Creating nodes /dev/er"$dev"[0-3] for major" Smajor
mknod '/dev/er'S$dev'0' ¢ Smajor O
mknod '/dev/er'S$dev'l' ¢ Smajor 1
mknod '/dev/er'$dev'2' c Smajor 2
mknod '/dev/er'S$dev'3' ¢ Smajor 3
chgrp mrf '/dev/er'S$dev[0-3]
chmod g+w '/dev/er'Sdev'3'
done

APPENDIX: module_unload script

#!/bin/sh
echo "Unloading modules"

/sbin/rmmod pci_mrfevg
/sbin/rmmod pci_mrfevr

echo "Removing device nodes"
rm -rf /dev/egl[a-h][0-3]
rm -rf /dev/egl[a-h][0-3]



